首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of platinum(IV) chloride with SnCl2?·?2H2O in the presence of [NHR3]3Cl (R?=?Me, Et) in 3M hydrochloric acid affords the anionic five-coordinate platinum(II) complexes [NHR3]3[Pt(SnCl3)5], R?=?Me (1), Et (2), respectively. Moreover, platinum(IV) chloride reacts with SnCl2?·?2H2O in the presence of bis(triphenylphosphoranylidene)ammonium chloride in acetone/dichloromethane to form [N(PPh3)2]3[Pt(SnCl3)5] (3). In contrast, reaction of an acetone solution of platinum(IV) chloride with SnCl2?·?2H2O in the presence of bis(triphenylphosphoranylidene) ammonium chloride resulted in the formation of cis-[N(PPh3)2]2[PtCl2(SnCl3)2] (4). The same products are obtained by using a platinum(II) salt as starting material. Similarly, cis and trans- dichlorobis(diethyl sulfide)platinum(II) reacts with SnCl2?·?2H2O in 5M hydrochloric acid to give [PtCl(SEt2)3]3[Pt(SnCl3)5] (5) by facile insertion of SnCl2 into the Pt–Cl bond. However, treatment of an acetone solution of cis- and trans-[PtCl2(SEt2)2] with SnCl2?·?2H2O in the presence of a small amount of HCl resulted in the formation of 5, which dissociates in solution to give [PtCl2(SEt2)2]. The complexes have been fully characterized by elemental analysis and multinuclear NMR (1H,?13C,?195Pt,?119Sn) spectroscopy. A structure determination of crystals grown from a solution of 2 by X-ray diffraction methods shows that platinum adopts a regular trigonal bipyramidal geometry.  相似文献   

2.
Abstract

While it might be expected that the availability of vacant coordination sites in the four coordinate acyl complexes trans[Pt(PPh3)2 (RCO)Cl] provides low energy pathways for alkyl and aryl migration and subsequent decarbonylation, the decarbonylation has been previously achieved only at elevated temperatures. The addition of SnCl2 greatly facilitates decarbonylation of [Pt(PPh3)2 (RCO)Cl] where R is CH3, C2 H5, Y[sbnd]C6 H4. Compounds of the type [Pt(PPh3)2 (RCO)SnCl3] and [Pt(PPh3)2 R(SnCl3)] have been isolated. The removal of SnCl2 from these compounds has been achieved with ethanol. A kinetic study of the decarbonylation of [Pt(PPh3)2 (RCO)SnCl3] (where R is CH3, C2 H5, Y[sbnd]C6 H4 for Y=H, CH3, CH3 O, NO2, Cl) is reported. The role of 3 and 5 coordinate intermediates in alkyl-aryl migrations in Pt(II) systems is discussed.  相似文献   

3.
The redox reaction of bis(2-benzamidophenyl) disulfide (H2L-LH2) with [Pd(PPh3)4] in a 1:1 ratio gave mononuclear and dinuclear palladium(II) complexes with 2-benzamidobenzenethiolate (H2L), [Pd(H2L-S)2(PPh3)2] (1) and [Pd2(H2L-S)2 (μ-H2L-S)2(PPh3)2] (2). A similar reaction with [Pt(PPh3)4] produced only the corresponding mononuclear platinum(II) complex, [Pt(H2L-S)2(PPh3)2] (3). Treatment of these complexes with KOH led to the formation of cyclometallated palladium(II) and platinum(II) complexes, [Pd(L-C,N,S)(PPh3)] ([4]) and [Pt(L-C,N,S) (PPh3)] ([5]). The molecular structures of 2, 3 and [4] were determined by X-ray crystallography.  相似文献   

4.
On the Nucleophilic Degradation of Tris(pentasulfido)platinum(IV), [Pt(S5)3]2?, and Bis(pentasulfido)platinum(II), [Pt(S5)2]2? The behaviour of [Pt(S5)3]2?, ( I ), towards sulfite, arsenite, sulfide, hydroxide, and triphenylphosphine has been studied qualitatively and quantitatively. With stoichiometric amounts of nucleophile one ring is degraded; the reaction product [Pt(S5)2]2?, ( II ), can be isolated. With excess of nucleophile all sulfur atoms are taken off from the platinum; with triphenylphosphine, however, (PPh3)2PtS4, ( III ), is formed. A mechanistic interpretation of the course of the reaction is given and supported by kinetic studies.  相似文献   

5.
The reaction of a dichloromethane solution of a mixture of cis,trans-[PtCl2(SMe2)2] with a tetrahydrofuran solution of SnBr2 resulted in oxidation of platinum(II) with halogen exchange producing cis,trans-[PtBr4(SMe2)2]. Reaction of a mixture of cis,trans-[PtCl2(SEt2)2], potassium tetrachloroplatinate(II) or potassium hexachloroplatinate(IV) with SnBr2 in hydrochloric acid solution resulted in formation of predominantly anionic five-coordinate trichlorostannyl platinum(II) complexes. Reaction of potassium tetrabromoplatinate(II) with SnCl2 in hydrobromic acid in the presence of tetraphenylphosphonium bromide affords cis-[PPh4]2[PtBr2(SnBr3)2]. The insertion of SnCl2 into Pt–Cl bond of platinum(II) complexes cis-[PtCl2(L2)] {L2 = (PPh3)2; (PMe3)2; {P(OMe)3}2; dppm (bis(diphenylphosphino)methane); dppa (bis(diphenylphosphino)amine); and dppe (1,2-bis(diphenylphosphino)ethane)} is described.  相似文献   

6.
It is shown that trigonal bipyramidal platinum(II), rhodium(I) and iridium(I) olefin complexes are better classified with the platinum(O) complex [Pt(PPh3)2(C2H4)] as class T olefin complexes than with the square-planar platinum(II) complexes such as [Pt(C2H4)Cl3]- which fall in class S. The underlying reasons for this are considered to be electronic rather than steric as was previously suggested.  相似文献   

7.
Palladium is determined by reaction with tin(II) chloride and rhordamine-6G in hydrochloric acid medium, flotation of the ion-association complex, [(R6G+)2Pd (SnCl?3)4]·[(R6G+) (SnCl?3] with di-isopropyl ether, and dissolution in acetone for spectrophotometry. The molar absorptivity is 2.84 x 105 l mol?1 cm?1 at 530 nm; Beer's law is obeyed in the range 0.05–0.35 μg Pd ml?1. Other platinum metals and silver interfere. Traces of palladium in silver metal are determined after extraction of palladium with dimethylglyoxime in chloroform.  相似文献   

8.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

9.
The complexes [IrH(CO)(PPh3)3], trans-[IrCI(CO)- (PPh3)2], [RhH(PPh3)4], [Pd(PPh3)4], [Pt(trans-stilbene)(PPh3)2] and [Pt(η3-CH2-COCH2)-(PPh3)2] catalyse the rearrangement of Me3SiCH2C(O)CH2Cl to CH2?C(OSiMe3)-CH2Cl.  相似文献   

10.
The synthesis and solution structures of new four- and five-coordinate phosphine and arsine complexes of Pt and Pd containing the trichlorostannate ligand are described. Complexes containing two and three SnCl?3-ligands have been identified from their 31P-, 119Sn- and 195Pt-NMR. spectra. The complexes trans-[M (SnCl3)2L2] (M = Pt, L-PEt3, PPr3, AsEt3; M = Pd, L = AsEt3) show unexpectedly large 2J(119Sn, 117Sn)-values (34,674–37,164 Hz) with the trans-orientation of these spins playing an important role. The heteronuclear coupling constant 2J(119Sn, 31P) in the five-coordinate cationic complexes [Pt(SnCl3)(P(o-AsPh2? C6H4)3)]+ and [Pt(SnCl3)(As(o-PPh2? C6H4)3)]+ also shows a geometric dependence. New five-coordinate anionic complexes of type [M (SnCl3)3L2]? (M = Pd, Pt; L = PEt3, AsEt3) may be prepared via addition of three mol-equiv. of SnCl2 and one mol-equiv. of (PPN)Cl to [MCl2L2] in acetone.  相似文献   

11.
Treatment of Pt(PPh3)4 with N,N‐dimethylthiocarbamoyl chloride, Me2NC(=S)Cl, in dichloromethane at ?20 °C processes the oxidative addition reaction to produce platinum complex [Pt(PPh3)21‐SCNMe2)(Cl)], 2 with releasing two triphenylphosphine molecules. The 31P{1H} NMR spectra of complex 2 shows the dissociation of the triphenylphosphine ligand to form diplatinum complex [Pt(PPh3)Cl]2(μ,η2‐SCNMe2)2, 3 in which the two SCNMe2 ligands coordinated through carbon to one metal center and bridging the other metal through sulfur. Complex 2 is characterized by X‐ray diffraction analysis.  相似文献   

12.
Oxidative Additions of Halogenes and Halogen Azides to Tin(II) Chloride SnCl2 reacts with bromine and iodine in the presence of 2,2′-dipyridyle (dipy) yielding the mixed ligand complexes SnCl2Br2(dipy) ( I ) and SnCl2I2(dipy) ( II ), respectively. The reactions of SnCl2 with the halogen azides ClN3, BrN3 and IN3 lead to SnCl2(N3)2 ( III ), which is associated by azid bridges. In the presence of NMe4Cl ligand exchange fails and the complex [NMe4]2 [SnCl4IN3] ( IV ) can be isolated by the reaction of SnCl2 with IN3. The vibrational spectra of I–IV and the 119Sn? Mössbauer spectra of I and II are recorded and discussed.  相似文献   

13.
The kinetics of the formation of the active species cis-[PtII(PPh3)2Cl(SnCl3)] and cis-[PtII(PPh3)2(SnCl3)2] from the hydroformylation catalyst precursor cis-[PtII(PPh3)2Cl2] in the presence of SnCl2, was studied in two different imidazolium-based ionic liquids. A large range of different chlorostannate melts consisting of 1-butyl-3-methyl-imidazolium cations and [SnxCly](−y + 2x) anions with varying molar fraction of SnCl2, were prepared and characterized by 1H and 119Sn NMR. The observed chemical shifts point to major changes in the composition of the anionic species within the melt. The second ionic liquid employed, viz., 1-butyl-3-methyl-imidazolium-bis(trifluormethylsulfonyl)amide was prepared in a colorless quality that enabled its application in kinetic studies. The concentration and temperature dependence of the substitution of Cl by [SnCl3] to yield cis-[PtII(PPh3)2Cl(SnCl3)], could be studied in detail. Theoretical (DFT) calculations were employed to model the reaction progress and to resolve the role of the ionic liquid in the activation of the catalyst. The available results are presented and a plausible mechanism for the formation of the catalytically active species is suggested.  相似文献   

14.
Syntheses and Characterizations of the First Tris and Tetrakis(trifluoromethyl) Palladates(II) and Platinates(II), [M(CF3)3(PPh3)] and [M(CF3)4]2— (M = Pd, Pt) Tris(trifluoromethyl)(triphenylphosphino)palladate(II) and platinate(II), [M(CF3)3PPh3], and the tetrakis(trifluoromethyl)metallates, [M(CF3)4]2— (M = Pd, Pt), are prepared from the reactions of [MCl2(PPh3)2] and Me3SiCF3 / [Me4N]F or [I(CF3)2] salts in good yields. [Me4N][M(CF3)3(PPh3)] crystallize isotypically in the orthorhombic space group Pnma (no. 62) with Z = 4. The NMR spectra of the new compounds are described.  相似文献   

15.
Camphenylphosphonic acid RPO3H2, prepared by the literature reaction of PCl5 with camphene, has been characterized by a single-crystal X-ray diffraction study. The compound crystallizes with a double chain structure formed by connected eight-membered hydrogen-bonded rings. Reaction of RPO3H2 with cis-[PtCl2(PPh3)2] and excess silver(I) oxide in refluxing dichloromethane gives the platinum(II) phosphonate complex [Pt{O3PR}(PPh3)2]. 31P{1H} NMR spectroscopic characterization of [Pt{O3PR}(PPh3)2] shows that the two PPh3 ligands are inequivalent due to asymmetry of the camphenyl group. An X-ray diffraction study on the platinum complex shows that the PC–H bond is directed toward the four-membered ring, resulting in the terpene group pointing away from the ring, in contrast to the previously reported structure of the saturated camphanylphosphonate complex. The differences are discussed in terms of steric interactions involving the phosphonate ligands.  相似文献   

16.
Cationic palladium(II) and platinum(II) complexes with chelate ylides and neutral ligands of the type, [MCl (Y) (L)]+BPh4? (M  Pd or Pt; Y  bdep or bdmp*; L = 4-methylpyridine, 3,5-dimethylpyrazole, PPh3, PCy3, PMePh2, P(OMe)3, AsPh3 or SbPh3) and [M(bdep) (4-methylpyridine)2] (BPh4)2 (M = Pd or Pt) were prepared and characterized by means of infrared and 1H NMR spectra.  相似文献   

17.
The platina‐β‐diketone [Pt2{(COMe)2H}2(µ‐Cl)2] ( 1 ) was found to react with monodentate phosphines to yield acetyl(chloro)platinum(II) complexes trans‐[Pt(COMe)Cl(PR3)2] (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PMePh2, 2c ; PMe2Ph, 2d ; P(n‐Bu)3, 2e ; P(o‐tol)3, 2f ; P(m‐tol)3, 2g ; P(p‐tol)3, 2h ). In the reaction with P(o‐tol)3 the methyl(carbonyl)platinum(II) complex [Pt(Me)Cl(CO){P(o‐tol)3}] ( 3a ) was found to be an intermediate. On the other hand, treating 1 with P(C6F5)3 led to the formation of [Pt(Me)Cl(CO){P(C6F5)3}] ( 3b ), even in excess of the phosphine. Phosphine ligands with a lower donor capability in complexes 2 and the arsine ligand in trans‐[Pt(COMe)Cl(AsPh3)2] ( 2i ) proved to be subject to substitution by stronger donating phosphine ligands, thus forming complexes trans‐[Pt(COMe)Cl(L)L′] (L/L′ = AsPh3/PPh3, 4a ; PPh3/P(n‐Bu)3, 4b ) and cis‐[Pt(COMe)Cl(dppe)] ( 4c ). Furthermore, in boiling benzene, complexes 2a – 2c and 2i underwent decarbonylation yielding quantitatively methyl(chloro)platinum(II) complexes trans‐[Pt(Me)Cl(L)2] (L = PPh3, 5a ; P(4‐FC6H4)3, 5b ; PMePh2, 5c ; AsPh3, 5d ). The identities of all complexes were confirmed by 1H, 13C and 31P NMR spectroscopy. Single‐crystal X‐ray diffraction analyses of 2a ·2CHCl3, 2f and 5b showed that the platinum atom is square‐planar coordinated by two phosphine ligands (PPh3, 2a ; P(o‐tol)3, 2f ; P(4F‐C6H4)3, 5b ) in mutual trans position as well as by an acetyl ligand ( 2a, 2f ) and a methyl ligand ( 5b ), respectively, trans to a chloro ligand. Single‐crystal X‐ray diffraction analysis of 3b exhibited a square‐planar platinum complex with the two π‐acceptor ligands CO and P(C6F5)3 in mutual cis position (configuration index: SP‐4‐3). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
《Polyhedron》1987,6(11):2009-2018
A new bidentate ligand {2-(diphenylphosphino)ethyl}benzylamine(DPEBA) was synthesized and characterized based on the IR, mass and 1H, 13C and 31P NMR spectra. Various complexes of platinum group metal ions and Ni(II) and Co(II) ions with the ligand were synthesized. Reaction of RuCl2(PPh3)3 or RuCl2(Me2SO)4 with the ligand DPEBA, resulted in formation of a penta-coordinate, Ru(II) species of the composition [RuCl(DPEBA)2]Cl. Carbonylation of [RuCl(DPEBA)2]Cl gave an octahedral carbonyl complex of the type [RuCl(CO)(DPEBA)2]Cl. The reaction of RuCl3·3H2O or RuCl3(AsPh3)2MeOH with a twofold excess of the ligand gave an octahedral Ru(III) cationic species [Ru(DPEBA)2Cl2]Cl. Carbonylation of the Ru(III) complex gave rise to a carbonyl complex [RuCl(CO)(DPEBA)2]Cl2. The ligand DPEBA reacts with cobalt(II) chloride in methanol to give the 1 : 1 complex [Co(DPEBA)Cl2]. A series of Rh(I) complexes [Rh(DPEBA)2Cl], [ RhCl(CO)(DPEBA)] and [Rh(DPEBA)2]Cl were synthesized by the reaction of DPEBA with RhCl(PPh3)3, RhCl(CO)(PPh3)2 and [Rh(COD)Cl]2, respectively. Reaction of [Ir(COD)Cl]2 and IrCl(CO)(PPh3)2 with the ligand DPEBA, gave the square-planar complexes [Ir(DPBA)2]Cl and [Ir(DPEBA)(CO)Cl], respectively. Octahedral cationic complexes of the type [M(DPEBA)2Cl2]Cl (M = Rh(III), Ir(III)) were synthesized by the reaction of the ligand DPEBA and rhodium and iridium trichlorides. Reaction of NiCl2·6H2O with DPEBA in 1 : 2 molar equivalents, in boiling butanol gave an octahedral neutral complex [Ni(DPEBA)2Cl2] which readily rearranges to the square-planar complex [Ni(DPEBA)2]Cl2 in methanol. Reaction of Pd(II) and Pt(II) chlorides with DPEBA gave square-planar, cationic complexes of the type [M(DPEBA)2Cl]Cl (M = Pd, Pt). All the complexes were characterized on the basis of their analytical and spectral data.  相似文献   

19.
The complex [Pt(C2H4)(PPh3)2] reacts with Pb2Ph6 to give cis-[PtPh(Pb2Ph5)(PPh3)2]; this decomposes in solution to cis-[PtPh(PbPh3)(PPh3)2], which may also be obtained from the ethylene complex and PbPh4. Lead compounds PbPhMe3 and PbPh3Br also give products of insertion into PbPh bonds, but PbMe3Cl gives cis- and trans-[PtCl(PbMe3)(PPh3)2]. The complex trans-[Pt(PbPh3)2(PEt3)2] reacts with 1,2-bis(diphenylphosphino)ethane (DPPE) to give [Pt(PbPh3)2(DPPE)] which readily decomposes in dichloromethane in presence of PEt3 to give [Pt(PbPh3)(PEt3)(DPPE)]Cl and [PtPh(PEt3)(DPPE)]Cl. The complex trans-[PtCl(PbPh3)(PEt3)2] was detected in the products of reactions between trans-[PtCl2(PEt3)2] and trans-[Pt(PbPh3)2(PEt3)2] or less than 2 moles of LiPbPh3; it was not detected in the mixture after treatment of trans -[Pt(PbPh3)2(PEt3)2] with HCl. In contrast to an earlier report, we were unable to detect lead-containing complexes in the products of the reaction between trans-[PtHCl(PPh3)2] and Ph3PbNO3. The complexes and their decomposition products were identified by pre31P-{1H} NMR spectroscopy.  相似文献   

20.
The P-functional organotin chloride Ph2PCH2CH2SnCl3 reacts with [(COD)MCl2] and trans-[(Et2S)2MCl2] (M=Pd, Pt) in molar ratio 1:1 to the zwitterionic complexes [(COD)M+(Cl)(PPh2CH2CH2SnCl4)] (1: M=Pd; 2: M=Pt) and trans-[(Et2S)2M+(Cl)(PPh2CH2CH2SnCl4)] (3: M=Pd; 4: M=Pt). The same reaction with [(COD)Pd(Cl)Me] yields under transfer of the methyl group from palladium to tin the complex [(COD)M+(Cl)(PPh2CH2CH2SnMeCl3)] (5) which changes in acetone into the dimeric adduct [Cl2Pd(PPh2CH2CH2SnMeCl2·2Me2CO)]2 (6). In molar ratio 2:1 Ph2PCH2CH2SnCl3 reacts with [(COD)MCl2] to the complexes [Cl2Pd(PPh2CH2CH2SnCl3)2] (7: M=Pd, mixture of cis/trans isomer; 8: M=Pt, cis isomer). In a subsequent reaction 8 is transformed in acetone into the 16-membered heterocyclic complex cis-[Cl2Pt(PPh2CH2CH2)2SnCl2]2 (9). trans-[(Et2S)2PtCl2] and Ph2PCH2CH2SnCl3 in molar ratio 1:2 yields the zwitterionic complex [(Et2S)M+(Cl)(PPh2CH2CH2SnCl3)(PPh2CH2CH2SnCl4)] (10). The results of crystal structure analyses of 1, 3, 6, 9 and of the adduct of the trans-isomer of 7 with acetone (7a) are reported. 31P- and 119Sn-NMR data of the complexes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号