首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effect of thermal activation on atomic-scale friction is often described in the framework of the Prandtl-Tomlinson model. Accurate use of this model relies on parameters that describe the shape of the corrugation potential β and the transition attempt frequency f(0). We show that the commonly used form of β for a sinusoidal corrugation potential can lead to underestimation of friction, and that the attempt frequency is not, as is usually assumed, a constant value, but rather varies as the energy landscape evolves. We partially resolve these issues by demonstrating that numerical results can be captured by a model with a fitted β and using harmonic transition state theory to develop a variable form of the attempt frequency. We incorporate these developments into a more accurate and generally applicable expression relating friction to temperature and velocity. Finally, by using a master equation approach, we verify the improved analytical model is accurate in its expected regime of validity.  相似文献   

2.
We perform a computational study of a variant of the “train” model for earthquakes [Phys. Rev. A 46, 6288 (1992)], where we assume a static friction that is a stochastic function of position rather than being velocity dependent. The model consists of an array of blocks coupled by springs, with the forces between neighbouring blocks balanced by static friction. We calculate the probability, P(s), of the occurrence of avalanches with a size s or greater, finding that our results are consistent with the phenomenology and also with previous models which exhibit a power law over a wide range. We show that the train model may be mapped onto a stochastic sandpile model and study a variant of the latter for non-spherical grains. We show that, in this case, the model has critical behaviour only for grains with large aspect ratio, as was already shown in experiments with real ricepiles. We also demonstrate a way to introduce randomness in a physically motivated manner into the model.  相似文献   

3.
We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram.  相似文献   

4.
王苍龙  段文山  陈建敏  石玉仁 《中国物理 B》2011,20(1):14601-014601
The dynamics of a certain density of interacting atoms arranged on a two-dimensional square lattice, which is made to slide over a two-dimensional periodic substrate potential with also the quare lattice symmetry, in the presence of dissipation, by an externally applied driving force, is studied. By rotating the misfit angle θ, the dynamical behaviour displays two different tribological regimes: one is smooth, the other becomes intermittent. We comment both on the nature of the atomic dynamics in the locked-to-sliding transition, and on the dynamical states displayed during the atom motion at different values of the driving force. In tribological applications, we also investigate how the main model parameters such as the stiffness strength and the magnitude of the adhesive force affect the static friction of the system. In particular, our simulation indicates that the superlubricity will appear.  相似文献   

5.
An atomic cluster moving along a solid surface can undergo dissipation of its translational energy through a direct mode, involving the coupling of the center-of-mass motion to thermal excitations of the substrate, and an indirect mode, due to damping of the internal motion of the cluster, to which the center-of-mass motion can be coupled as a result of surface potential. Focussing only on the less well understood indirect mode, on the basis of numerical solutions, we present, departures from a recently reported simple relationship between the force and velocity of nonlinear friction. A generalization of the analytic considerations that earlier led to that relationship is carried out and shown to explain the departures satisfactorily. Our generalization treats for the system considered (dimer sliding over a periodic substrate) the complete dependence on several of the key parameters, specifically internal dissipation, natural frequency, substrate corrugation, and length ratio. Further predictions from our generalizations are found to agree with new simulations. The system analyzed is relevant to nanostructures moving over crystal surfaces.  相似文献   

6.
A transition from stick-slip to continuous sliding is observed for atomically modulated friction by means of a friction force microscope. When the stick-slip instabilities cease to exist, a new regime of ultralow friction is encountered. The transition is described in the framework of the Tomlinson model using a parameter eta which relates the strength of the lateral atomic surface potential and the stiffness of the contact under study. Experimentally, this parameter can be tuned by varying the normal load on the contact. We compare our results to a recently discussed concept called superlubricity.  相似文献   

7.
We present a general purpose QM-MM-MD engine (DYNGA) designed to test alternative hybrid Hamiltonians geared towards the treatment of problems of interest in structural biology including the use of experimental data constraints. In this first presentation we use DYNGA to explore the behaviour of a traditional QM-MM approach in the treatment of the water—water interaction. We find the potential energy hypersurface for the water dimer computed with the HF 4–31G*/TIP3P hybrid Hamiltonian tends to be too flat. We also explore the effect of using traditional QM-MM techniques on proton wires and conclude there is a need for improvement, possibly addressed by using polarizable force fields.  相似文献   

8.
We investigate the plastic shear response during static friction of an asperity protruding from a large FCC single crystal. The asperity is in perfectly adhesive contact with a rigid platen and is sheared by tangentially moving the platen. Using discrete dislocation plasticity simulations, we elucidate the plastic shear behaviour of single asperities of various size and shape, in search for the length scale that controls the plastic behaviour. Since plasticity can occur also in the crystal, identification of the length scale that controls a possible size-dependent plastic behaviour is far from being trivial. It is found that scaling down the dimensions of an asperity results in a higher contact shear strength. The contact area is dominant in controlling the plastic shear response, because it determines the size of the zone, in and below the asperity, where dislocation nucleation can occur. For a specific contact area, there is still a dependence on asperity volume and shape, but this is weaker than the dependence on contact area alone.  相似文献   

9.
The power output of Stirling engines can be optimized by several means. In this study, the focus is on potential performance improvements that can be achieved by optimizing the piston motion of an alpha-Stirling engine in the presence of dissipative processes, in particular mechanical friction. We use a low-effort endoreversible Stirling engine model, which allows for the incorporation of finite heat and mass transfer as well as the friction caused by the piston motion. Instead of performing a parameterization of the piston motion and optimizing these parameters, we here use an indirect iterative gradient method that is based on Pontryagin’s maximum principle. For the varying friction coefficient, the optimization results are compared to both, a harmonic piston motion and optimization results found in a previous study, where a parameterized piston motion had been used. Thus we show how much performance can be improved by using the more sophisticated and numerically more expensive iterative gradient method.  相似文献   

10.
We present a revision to the well known Störmer–Verlet algorithm for simulating second order differential equations. The revision addresses the inclusion of linear friction with associated stochastic noise, and we analytically demonstrate that the new algorithm correctly reproduces diffusive behaviour of a particle in a flat potential. For a harmonic oscillator, our algorithm provides the exact Boltzmann distribution for any value of damping, frequency and time step for both underdamped and overdamped behaviour within the usual stability limit of the Verlet algorithm. Given the structure and simplicity of the method, we conclude that this approach can trivially be adapted for contemporary applications, including molecular dynamics with extensions such as molecular constraints.  相似文献   

11.
We present first elements of kinetic theory appropriate to the inhomogeneous phase of the Hamiltonian Mean Field (HMF) model. In particular, we investigate the case of strongly inhomogeneous distributions for T→0 and exhibit curious behaviour of the force auto-correlation function and friction coefficient. The temporal correlation function of the force has an oscillatory behaviour which averages to zero over a period. By contrast, the effects of friction accumulate with time and the friction coefficient does not satisfy the Einstein relation. On the contrary, it presents the peculiarity to increase linearly with time. Motivated by this result, we provide analytical solutions of a simplified kinetic equation with a time dependent friction. Analogies with self-gravitating systems and other systems with long-range interactions are also mentioned.  相似文献   

12.
We study a model of two interacting Hamiltonian particles subject to a common potential in contact with two Langevin heat reservoirs: one at finite and one at infinite temperature. This is a toy model for ‘extreme’ non-equilibrium statistical mechanics. We provide a full picture of the long-time behaviour of such a system, including the existence/non-existence of a non-equilibrium steady state, the precise tail behaviour of the energy in such a state, as well as the speed of convergence toward the steady state. Despite its apparent simplicity, this model exhibits a surprisingly rich variety of long time behaviours, depending on the parameter regime: if the surrounding potential is ‘too stiff’, then no stationary state can exist. In the softer regimes, the tails of the energy in the stationary state can be either algebraic, fractional exponential, or exponential. Correspondingly, the speed of convergence to the stationary state can be either algebraic, stretched exponential, or exponential. Regarding both types of claims, we obtain matching upper and lower bounds.  相似文献   

13.
We propose a simple friction model for isolated polymer chains on a solid substrate. The chains are pulled at constant velocity by one end, the other end can be trapped on the solid substrate on localised sites. We focus on the energy dissipation due to the traps. This simple model leads to nontrivial friction laws, depending on the velocity and the distance between traps. Some refinements of the model such as the effect of thermal fluctuations are also reported. Received 20 March 2000  相似文献   

14.
We derive and evaluate a pertubative expression for the friction parameter of a Brownian motion formalism. Our model system consists of a single massive ion near the surface of an electron gas. The relation of this friction parameter to recently calculated dynamical corrections to the image potential is clarified.  相似文献   

15.
In this paper we examine the use of dynamic friction within a bolted structure to improve damping properties of the structure. The structure considered for this paper consists of two steel beam-columns bolted together allowing dynamic friction to occur at the interface. This paper presents an analysis of the behaviour of the structure and the effect of friction on its dynamics. It also presents an analysis of the energy dissipation in the structure by means of friction and the optimization of the bolt tension in order to dissipate the maximum vibration energy. We define analytical expressions for the vibration behaviour before and after slip occurs as well as the condition at which the slip-stick transition occurs. An experiment, in which the measurements of the bolt tension, the slip within the structure and the bending velocity are made, is used to validate the model. The theoretical analysis gave very close agreement with the experimental results and the effective damping of the structure was increased by a factor of approximately 10 through the use of dynamic friction.  相似文献   

16.
We introduce and study a da Vinci fluid, a fluid whose dissipation is dominated by solid friction. We analyse the flow rheology of a discrete model and then coarse-grain it to the continuum. We find that the model gives rise to behaviour that is characteristic of dense granular fluids. In particular, it leads to plug flow. We analyse the nucleation mechanism of plugs and their development. We find that plug boundaries generically expand and we calculate the growth rate of plug regions. In systems whose internal effective dynamic and static friction coefficients are relatively uniform we find that the linear size of plug regions grows as (time)1/3 . The suitability of the model to granular materials is discussed.  相似文献   

17.
We study the rolling motion of a small solid sphere on a fibrillated rubber substrate in an external field in the presence of a Gaussian noise. From the nature of the drift and the evolution of the displacement fluctuation of the ball, it is evident that the rolling is controlled by a complex non-linear friction at a low velocity and a low noise strength (K), but by a linear kinematic friction at a high velocity and a high noise strength. This transition from a non-linear to a linear friction control of motion can be discerned from another experiment in which the ball is subjected to a periodic asymmetric vibration in conjunction with a random noise. Here, as opposed to that of a fixed external force, the rolling velocity decreases with the strength of the noise suggesting a progressive fluidization of the interface. A state (K) and rate (V) dependent friction model is able to explain both the evolution of the displacement fluctuation as well as the sigmoidal variation of the drift velocity with K. This research sets the stage for studying friction in a new way, in which it is submitted to a noise and then its dynamic response is studied using the tools of statistical mechanics. Although more works would be needed for a fuller realization of the above-stated goal, this approach has the potential to complement direct measurements of friction over several decades of velocities and other state variables. It is striking that the non-Gaussian displacement statistics as observed with the stochastic rolling is similar to that of a colloidal particle undergoing Brownian motion in contact with a soft microtubule.  相似文献   

18.
19.
林麦麦  段文山  陈建敏 《中国物理 B》2010,19(2):26201-026201
By using the molecular dynamic simulation method with a fourth-order Runge--Kutta algorithm, a two-dimensional dc- and ac-driven Frenkel--Kontorova (FK) model with a square symmetry substrate potential for a square lattice layer has been investigated in this paper. For this system, the effects of many different parameters on the average velocity and the static friction force have been studied. It is found that not only the amplitude and frequency of ac-driven force, but also the direction of the external driving force and the misfit angle between two layers have some strong influences on the static friction force. It can be concluded that the superlubricity phenomenon appears easily with a larger ac amplitude and lower ac frequency for some special direction of the external force and misfit angle.  相似文献   

20.
Oscillatory behaviour of state variables is desirable in pulse combustors, as properly designed pulsations lead to improved performances, such as higher thermal efficiency and lower emissions compared to steady combustors. In the present work, we perform a systematic investigation of the stability of steady states and limit cycles of a pulse combustor model through numerical continuation. Different bifurcation parameters such as tailpipe friction factor, wall temperature, convective heat transfer coefficient, inlet temperature and inlet fuel mass fraction are varied to identify the complete ranges of those parameters at which limit cycles can be expected. This analysis identifies alternative stable periodic regimes in parameter space (e.g. friction factor). In addition, a few performance indicators such as amplitude of oscillations, cycle-averaged heat transfer and cycle-averaged specific thrust are compared between different ranges of friction factor yielding limit cycle oscillations. The comparison clearly shows that, depending upon the application, friction factor can be chosen from different regimes. The time-integration of the model is also performed to support the bifurcation results obtained from numerical continuation, wherever appropriate. The complete stability margin of limit cycle oscillations for those bifurcation parameters can be useful for improved design of the combustor and for determining the optimal operating conditions of pulse combustors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号