首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A specially developed stroboscopic instrument has been used to measure the instantaneous velocities in the wall region (including the viscous sublayer) in a turbulent liquid (water) duct flow. Values of the average velocity and the turbulent fluctuations are found as a function of the distance from the wall. The method employed is much simpler than hot-wire anemometry, although somewhat less accurate.The author thanks V. M. Karsten and E. S. Mikhailov for their assistance with the experiments and E. M. Khabakhpashev for his useful advice.  相似文献   

2.
An experimental simulation of the interaction of vortex ring-like eddies with the sublayer of a turbulent boundary layer is investigated. An artificially generated vortex ring interacting with a Stokes' layer enables investigation of the interaction with reproducible initial conditions and in the absence of background turbulence. All of the observed features in the turbulent boundary layer production process such as the streaky structure, the pockets, the hairpin vortices, streak lift-up, oscillation, and breakup, have been observed to form. The model shows us that hairpin vortices can pinchoff and reconnect forming new vortex ring-like eddies. Interestingly, the model includes interactions that occur with low probability in the turbulent boundary layer, but which contribute significantly to transport, and may be the events most readily controllable.  相似文献   

3.
Results are presented of an experimental investigation of the interaction of a subsonic axisymmetric jet, within the initial section, and a flat plate mounted parallel to the jet axis. Relations are obtained for the mean and fluctuating velocities in the wall boundary layer, and the friction stress on the plate is also given.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 77–82, November–December, 1972.  相似文献   

4.
 Temperature changes have a significant influence on the measurements of Reynolds stresses in turbulent boundary layers. As compared to the spanwise velocity fluctuations the streamwise turbulence intensity is especially sensitive to temperature deviations. Although this is a general statement its importance is clearly elucidated in a shear-free turbulence near a solid wall, since the mixing due to turbulence production is minimized in this flow. A consequence of temperature influence on hot-wire measurements is that frictional heating from the wall has produced contradictory results in different experiments on shear-free turbulence. In the current paper, measurements of streamwise and spanwise turbulence intensities have been conducted at different wall temperatures, thereby simulating the contradictory results mentioned above. A simple model has been developed showing that the turbulence intensities are affected by both the rms. value of the temperature fluctuations and the correlation between fluctuating temperature and velocity. These correlations are measured and the developed model is used to explain deviations in earlier measurements on shear-free turbulence. Moreover, the individual magnitudes of the two correlations in the temperature correction are estimated and their individual importance is discussed. Received: 17 February 1997 / Accepted: 18 January 1998  相似文献   

5.
A local suppression in the generation of near wall Reynolds stress is achieved by modifying the buffer region and sublayer (y + <30) of a turbulent pipe flow with a 16.4 wall unit high wall mounted protrusion. Multi-component, multi-point, time resolved laser Doppler velocimetry measurements are made in the undisturbed and modified ARL/PSU glycerin tunnel pipe flow at a Reynolds number of approximately 10000. A downstream converging flow field is produced by the divergence of the approaching mean flow around the protrusion. A pair of counter-rotating vortices, 15 wall units in diameter with common flow down, are generated by the protrusion and also contribute to the wall directed flow convergence. The convergence region is 15 wall units high and more than 100 wall units long and appears to decouple the near wall region from the outer turbulent wall layer. Locally, turbulent velocity fluctuations in the form of Reynolds stress producing events, sweeps and ejections, are retarded within this region. This results in a reduction in near wall uv Reynolds stress and local wall shear. Interestingly, the counter-rotating vortices act to increase turbulent diffusion in a manner which is uncorrelated with Reynolds stress generation.  相似文献   

6.
The effects of three-dimensionality on the turbulence producing near-wall structures over a rotating disk are examined using hydrogen bubble visualization. Laser Doppler anemometry measurements of the tangential and radial velocities indicate the flow to resemble that of an infinite disk. It was found that the crossflow acts to reduce vertical mixing during the turbulence ejection events, thus reducing the efficiency of the boundary layer in producing shear stress.This research has been sponsored by the Department of Energy Office of Basic Energy Sciences through Grants DE-FG03-86ER13608 and DE-FG03-93ER12309.  相似文献   

7.
8.
A generalized treatment for the wall boundary conditions relating to turbulent flows is developed that blends the integration to a solid wall with wall functions. The blending function ensures a smooth transition between the viscous and turbulent regions. An improved low Reynolds number k?ε model is coupled with the proposed compound wall treatment to determine the turbulence field. The eddy viscosity formulation maintains the positivity of normal Reynolds stresses and Schwarz' inequality for turbulent shear stresses. The model coefficients/functions preserve the anisotropic characteristics of turbulence. Computations with fine and coarse meshes of a few flow cases yield appreciably good agreement with the direct numerical simulation and experimental data. The method is recommended for computing the complex flows where computational grids cannot satisfy a priori the prerequisites of viscous/turbulence regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A one-equation low-Reynolds number turbulence model has been applied successfully to the flow and heat transfer over a circular cylinder in turbulent cross flow. The turbulence length-scale was found to be equal 3.7y up to a distance 0.05 and then constant equal to 0.185 up to the edge of the boundary layer (wherey is the distance from the surface and is the boundary layer thickness).The model predictions for heat transfer coefficient, skin friction factor, velocity and kinetic energy profiles were in good agreement with the data. The model was applied for Re 250,000 and Tu0.07.Nomenclature µ,C D Constants in the turbulence kinetic energy equation - C 1,C 2 Constants in the turbulence length-scale equation - Skin friction coefficient atx - D Cylinder diameter - F Dimensionless flow streamwise velocityu/u e - k Turbulence kinetic energy =1/2 the sum of the squared three fluctuating velocities - K Dimensionless turbulence kinetic energyk/u e /2 - I Dimensionless temperature (T–T w )/(T T w ) - l Turbulence length-scale - l e Turbulence length-scale at outer region - Nu D Nusselt number - p Pressure - Pr Prandtl number - Pr t Turbulent Prandtl number - Pr k Constant in the turbulence kinetic energy equation - R Cylinder radius - Re D Reynolds number u D - Re x Reynolds number u x - R K Reynolds number of turbulence - T Mean temperature - T Mean temperature at ambient - T s Mean temperature at surface - Tu Cross flow turbulence intensity, - u Mean flow streamwise velocity - u Fluctuating streamwise velocity - u e Mean flow velocity at far field distance - u Mean flow velocity at ambient - u* Friction velocity - v Mean velocity normal to surface - V Dimensionless mean velocity normal to surface - x,x 1 Distance along the surface - y Distance normal to surface - Dimensionless pressure gradient parameter - Boundary layer thickness atu=0.9995u e - Transformed coordinate iny direction - Fluid molecular viscosity - t Turbulent viscosity - eff + t - µ Fluid molecular viscosity at ambient - Kinematic viscosity/ - Density - Density at ambient - w Wall shear stress - w,0 Wall shear stress at zero free stream turbulence  相似文献   

10.
The statistical turbulence characteristics obtained by direct numerical simulation of two flows, namely, flow in a circular pipe and flow in a channel with parallel walls, are given. The velocity profiles and the distributions of the statistical moments up to the fourth order inclusive are analyzed. The calculation results are compared with known experimental and numerical data.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 32–43, May–June, 1996.  相似文献   

11.
Adaptive wall functions for the v2f turbulence model have been derived for the flow over a flat plate at zero pressure gradient. These wall functions were implemented via tables for the turbulence quantities and the friction velocity uτ. A special treatment for the ε and f boundary conditions is proposed. On fine grids (y+<1) this approach yields results consistent with the wall integration solution. Detailed numerical results are presented for a zero pressure gradient boundary layer and separated flow over a ramp. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
In order to understand the effects of the wall permeability on turbulence near a porous wall, flow field measurements are carried out for turbulent flows in a channel with a porous bottom wall by a two-component particle image velocimetry (PIV) system. The porous media used are three kinds of foamed ceramics which have almost the same porosity (0.8) but different permeability. It is confirmed that the flow becomes more turbulent over the porous wall and tends to be turbulent even at the bulk Reynolds number of Reb=1300 in the most permeable wall case tested. Corresponding to laminar to turbulent transition, the magnitude of the slip velocity on the porous wall is found to increase drastically in a narrow range of the Reynolds number. To discuss the effects of the wall roughness and the wall permeability, detailed discussions are made of zero-plane displacement and equivalent wall roughness for porous media. The results clearly indicate that the turbulence is induced by not only the wall roughness but the wall permeability. The measurements have also revealed that as Reb or the wall permeability increases, the wall normal fluctuating velocity near the porous wall is enhanced due to the effects of the wall permeability. This leads to the increase of the turbulent shear stress resulting in higher friction factors of turbulence over porous walls.  相似文献   

13.
14.
基于近壁定常剪切应力假设,提出了一种新的适用于浸入边界法的大涡模拟紊流壁面模型。通过引入壁面滑移速度,修正了线性速度剖面计算得到的壁面剪切应力,使之满足Werner-Wengle模型。将其应用于平板紊流和高Re数圆管紊流的数值模拟,对比采用和不采用壁面模型的结果得知,采用此模型的速度剖面与实验值吻合良好,验证了此模型的有效性。研究了不同欧拉/拉格朗日网格相对位置对结果的影响,证明了此模型具有较好的鲁棒性,以及可根据局部流动状态和网格精度自动开闭的特点。  相似文献   

15.
A survey is made of the standard deviation of the streamwise velocity fluctuations in near-wall turbulence and in particular of the Reynolds-number-dependency of its peak value. The following canonical flow geometries are considered: an incompressible turbulent boundary layer under zero pressure gradient, a fully developed two-dimensional channel and a cylindrical pipe flow. Data were collected from 47 independent experimental and numerical studies, which cover a Reynolds number range of R θ=U θ/v=300−20,920 for the boundary layer with θ the momentum thickness and R +=u *R/v=100-4,300 for the internal flows with R the pipe radius or the channel half-width. It is found that the peak value of the rms-value normalised by the friction velocity, u *, is within statistical errors independent of the Reynolds number. The most probable value for this parameter was found to be 2.71±0.14 and 2.70±0.09 for the case of a boundary layer and an internal flow, respectively. The present survey also includes some data of the streamwise velocity fluctuations measured over a riblet surface. We find no significant difference in magnitude of the normalised peak value between the riblet and smooth surfaces and this property of the normalised peak value may for instance be exploited to estimate the wall shear stress from the streamwise velocity fluctuations. We also consider the skewness of the streamwise velocity fluctuations and find its value to be close to zero at the position where the variance has its peak value. This is explained with help of the equations of the third-order moment of velocity fluctuations. These results for the peak value of the rms of the streamwise velocity fluctuations and also the coincidence of this peak with the zero value of the third moment can be interpreted as confirmation of local equilibrium in the near-wall layer, which is the basis of inner-layer scaling. Furthermore, these results can be also used as a requirement which turbulence models for the second and triple velocity correlations should satisfy. The authors are indebted to Prof. P. Bradshaw for making available his list of references on this topic and for his remarks on “active” and “inactive” motions. We also gratefully acknowledge discussions with Prof. I. Castro regarding the value of σ u + above rough walls.  相似文献   

16.
17.
壁湍流相干结构和减阻控制机理   总被引:2,自引:0,他引:2  
许春晓 《力学进展》2015,45(1):201504
剪切湍流中相干结构的发现是上世纪湍流研究的重大进展之一,这些大尺度的相干运动在湍流的动力学过程中起重要作用,也为湍流的控制指出了新的方向.壁湍流高摩擦阻力的产生与近壁区流动结构密切相关,基于近壁区湍流动力学过程的减阻控制方案可以有效降低湍流的摩擦阻力,但是随着雷诺数的升高, 这些控制方案的有效性逐渐降低.近年来研究发现, 在高雷诺数情况下外区存在大尺度的相干运动,这种大尺度运动对近壁区湍流和壁面摩擦阻力的产生有重要影响,为高雷诺数湍流减阻控制策略的设计提出了新的挑战.该文将对壁湍流相干结构的研究历史加以简单的回顾,重点介绍近壁区相干结构及其控制机理、近年来高雷诺数外区大尺度运动的研究进展,在此基础上提出高雷诺数减阻控制研究的关键科学问题.   相似文献   

18.
Velocity fluctuations in the large scales of the atmosphere's meso-scale have turbulent characteristics of random fluctuations and a scale-size distribution near k−5/3 (Gage, 1979. J. Atmos. Sci. 36, 1950–1954; Lilly, 1983. J. Atmos. Sci. 40, 749–761; Lilly et al., 1998. Theoret. Comput. Fluid Dyn. 11, 139–153). Explanations of this motion field have ranged from inverse cascading quasi-geostrophic (i.e. quasi-two-dimensional) turbulence, to gravity waves (VanZandt, 1982. Geophys. Res. Lett. 9, 575–578). We describe efforts to relate observational spectra to various theories ranging from quasi-geostrophic turbulence to gravity waves. We note that at the larger scales quasi-geostrophic theory may suffice, but at smaller scales, a quasi-geostrophic explanation becomes untenable because the importance of rotation becomes progressively weaker as scales of the flow becomes smaller (the Rossby number approaches unity). We then discuss numerical simulations designed to discriminate between alternative explanations of the flow. Several simulations are reviewed, starting with those of Herring and Métais (1989. J. Fluid Mech. 202, 97–115), and finally those described by Lilly et al. (1998. Theoret. Comput. Fluid Dyn. 11, 139–153).  相似文献   

19.
20.
Structural similarities between samples of individual, apparently random structures in various wall-bounded turbulent flows are examined using a template-matching technique. Two-dimensional structural patterns obtained by particle image velocimetry in a turbulent boundary layer are sampled along streamwise lines to extract one-dimensional spatial series that are used as templates. These templates are correlated with time series data obtained in turbulent pipe flow, turbulent channel flow, and atmospheric boundary layer flow in order to determine the frequency and coherency with which similar structures occur. The results indicate that a small ensemble of templates from one flow can be concatenated to represent a large fraction of the entire velocity-time history of each of the other flows by using episodes during which the various templates correlate well. Thus, within the pipe flow, channel flow, and atmospheric boundary layer, one frequently finds detailed time series segments that coincide closely, i.e., in fine detail, with a handful of templates found in a laboratory boundary layer. This type of similarity, which includes seemingly random, fine details at large and small scales, is much stronger than similarity based on statistical comparisons. The individual templates that work best, i.e., those that most frequently yield episodes of high correlation, are segments of hairpin-vortex packets. The high frequency with which these particular structures occur suggests that they are common features of all wall-bounded turbulent flows, including turbulent flows at very high Reynolds number such as the atmospheric boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号