首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotational spectrum of phenyl acetate, CH3COOC6H5, is measured using a free jet absorption millimeter-wave spectrometer in the range from 60 to 78 GHz and two pulsed jet Fourier transform microwave spectrometers covering a total frequency range from 2 to 26.5 GHz. The features of two large amplitude motions, the methyl group internal rotation and the skeletal torsion of the CH3COO group with respect to the phenyl ring C6H5 (tilted at about 70°), characterize the spectrum. The vibrational ground state is split into four widely spaced sublevels, labeled as A0, E0, A1, and E1, each of them with its set of rotational transitions and with additional interstate transitions. A global fit of the line frequencies of the four sublevels leads to the determination of 51 spectroscopic parameters, including the ΔEA0/A1 and ΔEE0/E1 vibrational splittings of ~36.4 and ~33.5 GHz, respectively. The V3 barrier to methyl internal rotation (~136 cm−1) and the skeletal torsion B2 barrier to the orthogonality of the two planes (~68 cm−1) are deduced.  相似文献   

2.
Methyl n-alkyl ketones form a class of molecules with interesting internal dynamics in the gas-phase. They contain two methyl groups undergoing internal rotations, the acetyl methyl group and the methyl group at the end of the alkyl chain. The torsional barrier of the acetyl methyl group is of special importance, since it allows for the discrimination of the conformational structures. As part of the series, the microwave spectrum of octan-2-one was recorded in the frequency range from 2 to 40 GHz, revealing two conformers, one with C1 and one with Cs symmetry. The barriers to internal rotation of the acetyl methyl group were determined to be 233.340(28) cm−1 and 185.3490(81) cm−1, respectively, confirming the link between conformations and barrier heights already established for other methyl alkyl ketones. Extensive comparisons to molecules in the literature were carried out, and a small overview of general trends and rules concerning the acetyl methyl torsion is given. For the hexyl methyl group, the barrier height is 973.17(60) cm−1 for the C1 conformer and 979.62(69) cm−1 for the Cs conformer.  相似文献   

3.
The Fourier transform microwave spectra of the E and Z isomers of butadienyl acetate were measured in the frequency range from 2 to 26.5 GHz under molecular‐jet conditions. The most stable conformer of each isomer, in which all heavy atoms are located in a symmetry plane, was identified after analyzing the spectrum by comparison with the results from quantum‐chemical calculations. The barriers to internal rotation of the acetyl methyl group were found to be 149.1822(20) and 150.2128(48) cm?1 for the E and Z isomers, respectively, which are similar to that of vinyl acetate. A comparison between two theoretical approaches treating internal rotation, the rho axis method and combined axis method, was also performed. The influence of the alkyl R chain on the methyl torsional barriers in CH3 ‐COOR acetates was explored.  相似文献   

4.
Using two molecular jet Fourier transform spectrometers, the microwave spectrum of hexan-2-one, also called methyl n-butyl ketone, was recorded in the frequency range from 2 to 40 GHz. Three conformers were assigned and fine splittings caused by the internal rotations of the two terminal methyl groups were analyzed. For the acetyl methyl group CH3 COC3H6CH3, the torsional barrier is 186.9198(50) cm−1, 233.5913(97) cm−1, and 182.2481(25) cm−1 for the three observed conformers, respectively. The value of this parameter could be linked to the structure of the individual conformer, which enabled us to create a rule for predicting the barrier height of the acetyl methyl torsion in ketones. The very small splittings arising from the internal rotation of the butyl methyl group CH3COC3H6 CH3 could be resolved as well, yielding the respective torsional barriers of 979.99(88) cm−1, 1016.30(77) cm−1, and 961.9(32) cm−1.  相似文献   

5.
The Raman (3500–40 cm–1) and infrared (3500–70 cm–1) spectra of gaseous and solid 2-methoxypropene, CH3O(CH3)C=CH2, and the isotopomers, CD3O(CH3)C=CH2 and CH3O(CD3)C=CD2 have been recorded. In addition, the Raman spectra of the liquids have been recorded with qualitative depolarization measurements. All of these data indicate that only one conformer is present in the fluid phases at ambient temperature and this form is the cis conformer, which remains in the solid. Assignments are provided for the fundamentals of all three isotopomers for the cis conformer with Cs symmetry. The far-infrared spectra of all three isotopic species have been recorded at a resolution of 0.1 cm–1 in the gas and 1.0 cm–1 in the solid. The parameters of the potential function governing the asymmetric torsion are determined to be V3 = 1485 ± 9 cm–1 and V6 = –55 ± 4 cm–1 for the d0 compound, where only two terms were determined, since a second conformer was not evident. The barrier to internal rotation for the methyl group attached to the oxygen atom is 1370 ± 8 cm–1 and the C—CH3 barrier is 772 ± 5 cm–1. Ab initio calculations with full electron correlation have been carried out by the perturbation method to second order to obtain the equilibrium structural parameters, harmonic force constants, fundamental frequencies, infrared intensities, Raman activities, depolarization values, and conformational stability. The predicted values have been compared to the experimental values where appropriate.  相似文献   

6.
Torsional and rotational spectroscopic properties of pyruvic acid are determined using highly correlated ab initio methods and combining two different theoretical approaches: Second order perturbation theory and a variational procedure in three-dimensions. Four equilibrium geometries of pyruvic acid, Tc, Tt, Ct, and CC, outcome from a search with CCSD(T)-F12. All of them can be classified in the Cs point group. The variational calculations are performed considering the three internal rotation modes responsible for the non-rigidity as independent coordinates. More than 50 torsional energy levels (including torsional subcomponents) are localized in the 406–986 cm−1 region and represent excitations of the ν24 (skeletal torsion) and the ν23 (methyl torsion) modes. The third independent variable, the OH torsion, interacts strongly with ν23. The A1/E splitting of the ground vibrational state has been evaluated to be 0.024 cm−1 as it was expected given the high of the methyl torsional barrier (338 cm−1). A very good agreement with respect to previous experimental data concerning fundamental frequencies (νCAL − νEXP ~ 1 cm−1), and rotational parameters (B0CAL − B0EXP < 5 MHz), is obtained.  相似文献   

7.
The gas‐phase structures and parameters describing acetyl methyl torsion of N‐ethylacetamide are determined with high accuracy, using a combination of molecular beam Fourier‐transform microwave spectroscopy and quantum chemical calculations. Conformational studies at the MP2 level of theory yield four minima on the energy surface. The most energetically favorable conformer, which possesses C1 symmetry, is assigned. Due to the torsional barrier of 73.4782(1) cm?1 of the acetyl methyl group, fine splitting up to 4.9 GHz is found in the spectrum. The conformational structure is not only confirmed by the rotational constants, but also by the orientation of the internal rotor. The 14N quadrupole hyperfine splittings are analyzed and the deduced coupling constants are compared with the calculated values.  相似文献   

8.
The far-infrared spectrum has been recorded from 50 to 360 cm–1 at a resolution of 0.10 cm–1 for acetyiacetylene (1-butyne-3-one], CH3C(O)CCH. The fundamental methyl torsion has been observed at 117.94 cm–1, from which a periodic barrier to internal rotation has been calculated to be 346 cm–1 (989 cal mol–1]. Infrared spectra (3500-50 cm–1] of the gas and solid and the Raman spectra (3500-100 cm–1) of the gas, liquid, and solid are reported. Utilizing previously reported rotational constants for three isotopic species,r o structural parameters have been determined for the heavy-atom skeleton. The fundamental vibrational frequencies, barrier to internal rotation, and structural parameters that have been obtained experimentally are compared to those obtained from ab initio Hartree-Fock calculations employing 3-21G, 6-31G, and DZ basis sets and to the corresponding quantities for some similar molecules.  相似文献   

9.
The self-assembly of 2,6-diformyl-4-methylphenol (DFMP) and 1-amino-2-propanol (AP)/2-amino-1,3-propanediol (APD) in the presence of copper(II) ions results in the formation of six new supramolecular architectures containing two versatile double Schiff base ligands (H3L and H5L1) with one-, two-, or three-dimensional structures involving diverse nuclearities: tetranuclear [Cu4(HL2−)2(N3)4]·4CH3OH·56H2O (1) and [Cu4(L3−)2(OH)2(H2O)2] (2), dinuclear [Cu2(H3L12−)(N3)(H2O)(NO3)] (3), polynuclear {[Cu2(H3L12−)(H2O)(BF4)(N3)]·H2O}n (4), heptanuclear [Cu7(H3L12−)2(O)2(C6H5CO2)6]·6CH3OH·44H2O (5), and decanuclear [Cu10(H3L12−)4(O)2(OH)2(C6H5CO2)4] (C6H5CO2)2·20H2O (6). X-ray studies have revealed that the basic building block in 1, 3, and 4 is comprised of two copper centers bridged through one μ-phenolate oxygen atom from HL2− or H3L12−, and one μ-1,1-azido (N3) ion and in 2, 5, and 6 by μ-phenoxide oxygen of L3− or H3L12− and μ-O2− or μ3-O2− ions. H-bonding involving coordinated/uncoordinated hydroxy groups of the ligands generates fascinating supramolecular architectures with 1D-single chains (1 and 6), 2D-sheets (3), and 3D-structures (4). In 5, benzoate ions display four different coordination modes, which, in our opinion, is unprecedented and constitutes a new discovery. In 1, 3, and 5, Cu(II) ions in [Cu2] units are antiferromagnetically coupled, with J ranging from −177 to −278 cm−1.  相似文献   

10.
The Raman spectra of gaseous, liquid and solid dimethylboric anhydride (CH3)2BOB(CH3)2 have been recorded from 10–3500 cm?1. The IR spectra from 4000–30 cm?1 have also been recorded. The spectra of the gaseous phase have been interpreted in terms of C2 symmetry implying a bent B-O-B skeleton with the B(CH3)2 groups twisted and consistent with a rather larger barrier to internal rotation about the B-O bonds. The spectra of the crystalline state, however, suggest that the molecular symmetry is altered upon solidification. Isotopic substitution of the oxygen atom by 18O confirmed that the B-O-B skeleton is linear in the solid state, and the spectra have been interpreted in terms of D2h molecular symmetry.  相似文献   

11.
A conformational study on the lowest triplet states of formaldehyde, acetaldehyde, propionaldehyde and acetone has been done using a minimal basis set, within the unrestricted Hartree—Fock framework.For the C3H6O species, the energy hypersurfaces (E θ1, θ2, θ3) were generated, where energy is a function of the methyl rotations (θ1, θ2) and C---O out-of-plane bending for acetone, and a function of methyl rotation (θ1), C2H5---C rotation (θ2) and CHO out-of-plane deformation (θ3) for propionaldehyde.The analysis of the hypersurface equations revealed the location and relative energies of the critical points (minima, first and second order saddle points as well as maxima): the barriers to inversion at the carbonyl group were 2.7 kcal mol−1 for acetone and 4.2 kcal mol−1 for propionaldehyde. Partial geometry optimization reduced these barriers to 2.5 and 2.4 kcal mol−1 respectively.For comparison, both the pyramidal minimum and planar saddle point for the inversion of triplet formaldehyde and acetaldehyde were totally optimized; the resultant barriers were 2.0 kcal mol−1 and 2.3 kcal mol−1, respectively. The barrier to rotation about the bond to the α-carbon was 1.1 kcal mol−1 for pyramidal acetone, 1.0 for acetaldehyde and ranged from 0.8 to 1.8 kcal mol−1 for the various propionaldehyde conformers.  相似文献   

12.
The far-infrared spectrum of gaseous fluoromethyl methyl ether, FCH2OCH3, along with three of the deuterium isotopes, has been recorded at a resolution of 0.10 cm–1 in the 350 to 50 cm–1 region. The fundamental asymmetric torsional and methyl torsional modes are extensively mixed and have been observed at 182 and 132 cm–1, respectively, for the stablegauche conformer with the lower frequency band having several excited states falling to lower frequency. An estimate is given for the potential function governing the asymmetric rotation. On the basis of a one-dimensional model the barrier to internal rotation of the methyl moiety is determined to be 527±9 cm–1 (1.51±0.03 kcal/mol). A complete assignment of the vibrational fundamentals for all four isotopic species observed from the infrared (3500 to 50 cm–1) spectra of the gas and solid and from the Raman (3200 to 10 cm–1) spectra of the gas, liquid, and solid is proposed. No evidence could be found in any of the spectra for the high-energytrans conformer. All of these data are compared to the corresponding quantities obtained from ab initio Hartree-Fock gradient calculations employing the 3-21G and 6-31G* basis sets along with the 6-31G* basis set with electron correlation at the MP2 level. Additionally, completer 0 geometries have been determined from the previously reported microwave data and carbon-hydrogen distances determined from infrared studies. The heavy-atom structural parameters (distances in Å, angles in degrees) arer(C1-F) = 1.395 ± 0.005;r(C1-O) = 1.368 ± 0.007;r(C2-O) = 1.426 ±0.003; FC1O = 111.33 ± 0.25; C1OC2 = 113.50 ± 0.18 and dih FC1OC2 = 69.12 ± 0.26. All of these results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

13.
The kinetics of the reaction of hydroxyl radical (OH) with dimethyl methylphosphonate (DMMP, (CH3O)2CH3PO) (reaction 1) OH + DMMP products (1) was studied at the bath gas (He) pressure of 1 bar over the 295–837 K temperature range. Hydroxyl radicals were produced in the fast reaction of electronically excited oxygen atoms O(1D) with H2O. The time-resolved kinetic profiles of hydroxyl radicals were recorded via UV absorption at around 308 nm using a DC discharge H2O/Ar lamp. The reaction rate constant exhibits a pronounced V-shaped temperature dependence, negative in the low temperature range, 295–530 K (the rate constant decreases with temperature), and positive in the elevated temperature range, 530–837 K (the rate constant increases with temperature), with a turning point at 530 ± 10 K. The rate constant could not be adequately fitted with a standard 3-parameter modified Arrhenius expression. The data were fitted with a 5-parameter expression as: k1 = 2.19 × 10−14(T/298)2.43exp(15.02 kJ mol−1/RT) + 1.71 × 10−10exp(−26.51 kJ mol−1/RT) cm3molecule−1s−1 (295–837 K). In addition, a theoretically predicted pressure dependence for such reactions was experimentally observed for the first time.  相似文献   

14.
The skeletal bending—internal rotation potential function for CH3NCS has been determined from the microwave spectrum which gives the height of the barrier to linearity at 209 cm?1 and the CNC equilibrium angle at 27.5°. An accidental near-resonance between the 20 and 33 skeletal bending states is found.  相似文献   

15.
Until now the reactions of organic peroxy radicals (RO2) with alkenes in the gas phase have been essentially studied at high temperature (T ≥ 360 K) and in the context of combustion processes, while considered negligible in the Earth''s atmosphere. In this work, the reactions of methyl-, 1-pentyl- and acetylperoxy radicals (CH3O2, C5H11O2, and CH3C(O)O2, respectively) with 2-methyl-2-butene, 2,3-dimethyl-2-butene and for the first time the atmospherically relevant isoprene, α-pinene, and limonene were studied at room temperature (298 ± 5 K). Monitoring directly the radicals with chemical ionization mass spectrometry led to rate coefficients larger than expected from previous combustion studies but following similar trends in terms of alkenes, with (in molecule−1 cm3 s−1) = 10−18 to 10−17 × 2/2 and = 10−14 to 10−13 × 5/5. While these reactions would be negligible for CH3O2 and aliphatic RO2 at room temperature, this might not be the case for acyl-, and perhaps hydroxy-, allyl- and other substituted RO2. Combining our results with the Structure–Activity Relationship (SAR) predicts kII(298 K) ∼10−14 molecule−1 cm3 s−1 for hydroxy- and allyl-RO2 from isoprene oxidation, potentially accounting for up to 14% of their sinks in biogenic-rich regions of the atmosphere and much more in laboratory studies.

The reactions of organic peroxy radicals with alkenes, overlooked until now, could be more significant than expected for some RO2 in the atmosphere.  相似文献   

16.
The far-infrared spectra (350–35 cm–1) of gaseous ethyl methyl ether-d 0 and ethyl methyl-d 3-ether have been recorded at a resolution of 0.10 cm–1. For the d 0 species, the fundamental asymmetric torsion of the more stable trans conformer (two methyl moieties are trans to one another) has been observed at 115.40 cm–1 with four upper state transitions falling to lower frequency, whereas, for the gauche form, it has been observed at 93.56 cm–1 with two excited states falling to lower frequency. the corresponding series for the d 3 species start from 106.00 and 87.10 cm–1, respectively. From these data, the asymmetric torsional potential coefficients for the d 0 species have been determined to be: V 1 = 572 ± 30; V 2 = 85 ± 8; V 3 = 619 ± 30; V 4 = 175 ± 18, and V 6 = –28 ± 3 cm–1. The trans to gauche and gauche to gauche barriers were calculated to be 958 cm–1 (11.5 kJ/mol) and 631 cm–1 (7.55 kJ/mol), respectively, with an energy difference of 550 ± 6 cm–1 (6.58 ± 0.07 kJ/mol). Utilizing three conformer pairs, variable temperature studies (–105 to –150°C) of the infrared spectra of the d 0 sample dissolved in liquid krypton gave an enthalpy difference of 547 ± 28 cm–1 (6.54 ± 0.33 kJ/mol) with the trans conformer the more stable rotamer. It is estimated that there is only 4% of the gauche conformer present at ambient temperatures. The structural parameters, conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies, which have been determined experimentally, are compared to those obtained from ab initio gradient predictions from RHF/6-31G* and with full electron correlation at the MP2 level with three different basis sets. The adjusted r 0 structural parameters have been obtained for the trans conformer from combined ab initio MP2/6-311+G** predictions and previously reported microwave rotational constants. The reported distances should be accurate to 0.003 Å and the angles to 0.5°. These results are compared to the corresponding quantities obtained for some similar molecules.  相似文献   

17.
The synthesis of air-stable, high-performance single-molecule magnets (SMMs) is of great significance for their practical applications. Indeed, Ln complexes with high coordination numbers are satisfactorily air stable. However, such geometries easily produce spherical ligand fields that minimize magnetic anisotropy. Herein, we report the preparation of three air-stable eight-coordinate mononuclear Dy(iii) complexes with triangular dodecahedral geometries, namely, [Dy(BPA-TPA)Cl](BPh4)2 (1) and [Dy(BPA-TPA)(X)](BPh4)2·nCH2Cl2 (X = CH3O and n = 1 for 2; L = PhO and n = 2 for 3), using a novel design concept in which the bulky heptadentate [2,6-bis[bis(2-pyridylmethyl)amino]methyl]-pyridine (BPA-TPA) ligand enwraps the Dy(iii) ion through weak coordinate bonds leaving only a small vacancy for a negatively charged (Cl), methoxy (CH3O) or phenoxy (PhO) moiety to occupy. Magnetic measurements reveal that the single-molecule magnet (SMM) property of complex 1 is actually poor, as there is almost no energy barrier. However, complexes 2 and 3 exhibit fascinating SMM behavior with high energy barriers (Ueff = 686 K for 2; 469 K for 3) and magnetic hysteresis temperatures up to 8 K, which is attributed to the pseudolinear ligand field generated by one strong, highly electrostatic Dy–O bond. Ab initio calculations were used to show the apparent difference in the magnetic dynamics of the three complexes, confirming that the pseudo-mono-axial ligand field has an important effect on high-performance SMMs compared with the local symmetry. This study not only presents the highest energy barrier for a triangular dodecahedral SMM but also highlights the enormous potential of the pseudolinear Dy–L ligand field for constructing promising SMMs.

Air-stable triangular dodecahedral Dy(iii) single-ion magnets with pseudo-mono-axial linear ligand fields exhibit high energy barrier exceeding 600 K, which represent the highest energy barrier for mononuclear SMMs with triangular dodecahedron.  相似文献   

18.
The microwave spectrum of 2-acetyl-3-methylthiophene (2A3MT) was recorded in the frequency range from 2 to 26.5 GHz using a molecular jet Fourier transform microwave spectrometer and could be fully assigned to the anti-conformer of the molecule, while the syn-conformer was not observable. Torsional splittings of all rotational transitions in quintets due to internal rotations of the acetyl methyl and the ring methyl groups were resolved and analyzed, yielding barriers to internal rotation of 306.184(46) cm−1 and 321.813(64) cm−1, respectively. The rotational and centrifugal distortion constants were determined with high accuracy, and the experimental values are compared to those derived from quantum chemical calculations. The experimentally determined inertial defect supports the conclusion that anti-2A3MT is planar, even though a number of MP2 calculations predicted the contrary.  相似文献   

19.
In this paper, the rate coefficients (k) and activation energies (Ea) for SiCl4, SiHCl3, and Si(CH3)2(CH2Cl)Cl molecules in the gas phase were measured using the pulsed Townsend technique. The experiment was performed in the temperature range of 298–378 K, and carbon dioxide was used as a buffer gas. The obtained k depended on temperature in accordance with the Arrhenius equation. From the fit to the experimental data points with function described by the Arrhenius equation, the activation energies (Ea) were determined. The obtained k values at 298 K are equal to (5.18 ± 0.22) × 10−10 cm3·s−1, (3.98 ± 1.8) × 10−9 cm3·s−1 and (8.46 ± 0.23) × 10−11 cm3·s−1 and Ea values were equal to 0.25 ± 0.01 eV, 0.20 ± 0.01 eV, and 0.27 ± 0.01 eV for SiHCl3, SiCl4, and Si(CH3)2(CH2Cl)Cl, respectively. The linear relation between rate coefficients and activation energies for chlorosilanes was demonstrated. The DFT/B3LYP level coupled with the 6-31G(d) basis sets method was used for calculations of the geometry change associated with negative ion formation for simple chlorosilanes. The relationship between these changes and the polarizability of the attaching center (αcentre) was found. Additionally, the calculated adiabatic electron affinities (AEA) are related to the αcentre.  相似文献   

20.
The dielectric relaxation rates of 18 phenols and 3 thiophenols have been determined in paraffin solutions at 4.2 or 77 K and used to obtain relative values of the tunnel splitting of the ground torsional state. Where comparison is possible the results are compatible with vapour phase microwave spectroscopic data. The barriers to hydroxyl rotation are calculated and are fairly consistent with barriers derived from far infrared data. Para-substituents F, CH3, Cl, C(CH3)3, Br and I in order of decreasing effectiveness, lower the barrier. COOH and CHO raise it by 350–400 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号