首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P450s (P450) are important enzymes in biology with useful biochemical reactions in, for instance, drug and xenobiotics metabolisms, biotechnology, and health. Recently, the crystal structure of a new member of the CYP116B family has been resolved. This enzyme is a cytochrome P450 (CYP116B46) from Tepidiphilus thermophilus (P450-TT) and has potential for the oxy-functionalization of organic molecules such as fatty acids, terpenes, steroids, and statins. However, it was thought that the opening to its hitherto identified substrate channel was too small to allow organic molecules to enter. To investigate this, we performed molecular dynamics simulations on the enzyme. The results suggest that the crystal structure is not relaxed, possibly due to crystal packing effects, and that its tunnel structure is constrained. In addition, the simulations revealed two key amino acid residues at the mouth of the channel; a glutamyl and an arginyl. The glutamyl’s side chain tightens and relaxes the opening to the channel in conjunction with the arginyl’s, though the latter’s side chain is less dramatically changed after the initial relaxation of its conformations. Additionally, it was observed that the effect of increased temperature did not considerably affect the dynamics of the enzyme fold, including the relative solvent accessibility of the amino acid residues that make up the substrate channel wall even as compared to the changes that occurred at room temperature. Interestingly, the substrate channel became distinguishable as a prominent tunnel that is likely to accommodate small- to medium-sized organic molecules for bioconversions. That is, P450-TT has the ability to pass appropriate organic substrates to its active site through its elaborate substrate channel, and notably, is able to control or gate any molecules at the opening to this channel.  相似文献   

2.
Cytochrome P450 (CYP) 7B1 is a steroid cytochrome P450 7α‐hydroxylase that has been linked directly with bile salt synthesis and hereditary spastic paraplegia type 5 (SPG5). The enzyme provides the primary metabolic route for neurosteroids dehydroepiandrosterone (DHEA), cholesterol derivatives 25‐hydroxycholesterol (25‐HOChol), and other steroids such as 5α‐androstane‐3β,17β‐diol (anediol), and 5α‐androstene‐3β,17β‐diol (enediol). A series of investigations including homology modeling, molecular dynamics (MD), and automatic docking, combined with the results of previous experimental site‐directed mutagenesis studies and access channels analysis, have identified the structural features relevant to the substrate selectivity of CYP7B1. The results clearly identify the dominant access channels and critical residues responsible for ligand binding. Both binding free energy analysis and total interaction energy analysis are consistent with the experimental conclusion that 25‐HOChol is the best substrate. According to 20 ns MD simulations, the Phe cluster residues that lie above the active site, particularly Phe489, are proposed to merge the active site with the adjacent channel to the surface and accommodate substrate binding in a reasonable orientation. The investigation of CYP7B1–substrate binding modes provides detailed insights into the poorly understood structural features of human CYP7B1 at the atomic level, and will be valuable information for drug development and protein engineering.  相似文献   

3.
碳氢键选择氧化是合成化学领域的重要课题,其中烷烃选择性羟化反应更是面临着化学选择性、区域选择性和立体选择性等多重挑战.细胞色素P450酶广泛分布于动植物和微生物体内,是公认的多功能生物氧化催化剂. P450酶对惰性C—H键的选择性氧化具有独特优势,在催化烷烃选择性羟化反应方面拥有巨大潜力.本综述简述了P450单加氧酶及其催化烷烃选择性羟化的反应机理,梳理了来自CYP153家族、CYP52家族和其他家族的天然P450酶催化各类烷烃底物的氧化反应和选择性,讨论了理性设计和定向进化策略在开发烷烃羟化P450突变酶过程中的经典案例,介绍了底物工程、诱饵分子、双功能小分子协同催化等几种化学活化P450酶的策略及其在烷烃羟化上的应用,探讨了P450酶在烷烃选择性羟化方面所面临的挑战和解决途径,并展望了其应用前景.  相似文献   

4.
Catching the structure of cytochrome P450 enzymes in flagrante is crucial for the development of P450 biocatalysts, as most structures collected are found trapped in a precatalytic conformation. At the heart of P450 catalysis lies Cpd I, a short-lived, highly reactive intermediate, whose recalcitrant nature has thwarted most attempts at capturing catalytically relevant poses of P450s. We report the crystal structure of P450BM3 mimicking the state in the precise moment preceding epoxidation, which is in perfect agreement with the experimentally observed stereoselectivity. This structure was attained by incorporation of the stable Cpd I mimic oxomolybdenum mesoporphyrin IX into P450BM3 in the presence of styrene. The orientation of styrene to the Mo-oxo species in the crystal structures sheds light onto the dynamics involved in the rotation of styrene to present its vinyl group to Cpd I. This method serves as a powerful tool for predicting and modelling the stereoselectivity of P450 reactions.  相似文献   

5.
Carbonic acid is an important species in a variety of fields and has long been regarded to be non-existing in isolated state, as it is thermodynamically favorable to decompose into water and carbon dioxide. In this work, we systematically studied a novel ionic complex [H2CO3·HSO4] using density functional theory calculations, molecular dynamics simulations, and topological analysis to investigate if the exotic H2CO3 molecule could be stabilized by bisulfate ion, which is a ubiquitous ion in various environments. We found that bisulfate ion could efficiently stabilize all the three conformers of H2CO3 and reduce the energy differences of isomers with H2CO3 in three different conformations compared to the isolated H2CO3 molecule. Calculated isomerization pathways and ab initio molecular dynamics simulations suggest that all the optimized isomers of the complex have good thermal stability and could exist at finite temperatures. We also explored the hydrogen bonding properties in this interesting complex and simulated their harmonic infrared spectra to aid future infrared spectroscopic experiments. This work could be potentially important to understand the fate of carbonic acid in certain complex environments, such as in environments where both sulfuric acid (or rather bisulfate ion) and carbonic acid (or rather carbonic dioxide and water) exist.  相似文献   

6.
An Escherichia coli whole‐cell biocatalyst for the direct hydroxylation of benzene to phenol has been developed. By adding amino acid derivatives as decoy molecules to the culture medium, wild‐type cytochrome P450BM3 (P450BM3) expressed in E.coli can be activated and non‐native substrates hydroxylated, without supplementing with NADPH. The yield of phenol reached 59 % when N‐heptyl‐l ‐prolyl‐l ‐phenylalanine (C7‐Pro‐Phe) was employed as the decoy molecule. It was shown that decoy molecules, especially those lacking fluorination, reached the cytosol of E. coli, thus imparting in vivo catalytic activity for the oxyfunctionalisation of non‐native substrates to intracellular P450BM3.  相似文献   

7.
The cytochromes P450 constitute a ubiquitous family of metalloenzymes, catalyzing manifold reactions of biological and synthetic importance via a thiolate‐ligated iron‐oxo (IV) porphyrin radical species denoted compound I (Cpd I). Experimental investigations have implicated this intermediate in a broad spectrum of biophysically interesting phenomena, further augmenting the importance of a Cpd I model system. Ab initio molecular dynamics, including Car–Parrinello and path integral methods, conjoin electronic structure theory with finite temperature simulation, affording tools most valuable to approach such enzymes. These methods are typically driven by density functional theory (DFT) in a plane‐wave pseudopotential framework; however, existing studies of Cpd I have been restricted to localized Gaussian basis sets. The appropriate choice of density functional and pseudopotential for such simulations is accordingly not obvious. To remedy this situation, a systematic benchmarking of thiolate‐ligated Cpd I is performed using several generalized‐gradient approximation (GGA) functionals in the Martins–Troullier and Vanderbilt ultrasoft pseudopotential schemes. The resultant electronic and structural parameters are compared to localized–basis DFT calculations using GGA and hybrid density functionals. The merits and demerits of each scheme are presented in the context of reproducing existing experimental and theoretical results for Cpd I. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
At the double : DFT studies on the biosynthesis of prostacyclin (PGI2, see scheme) from prostaglandin H2 (PGH2) show two reaction mechanisms through two different oxidation states, an FeIV–porphyrin intermediate and an FeIII–porphyrin π‐cation radical, followed by a proton‐coupled electron‐transfer process.

  相似文献   


9.
10.
The cytochromes P450 are a large class of heme‐containing enzymes that catalyze a broad range of chemical reactions in biosystems, mainly through oxygen‐atom transfer to substrates. A relatively unknown reaction catalyzed by the P450s, but very important for human health, is the activation of halogenated substrates, which may lead to toxicity problems. However, its catalytic mechanism is currently unknown and, therefore, we performed a detailed computational study. To gain insight into the metabolism of halogenated compounds by P450 enzymes, we have investigated the oxidative and reductive P450‐mediated activation of tetra‐ and trichloromethane as halogenated models with density functional theory (DFT) methods. We propose an oxidative halosylation mechanism for CCl4 under aerobic conditions by Compound I of P450, which follows the typical Groves‐type rebound mechanism. By contrast, the metabolism of CHCl3 occurs preferentially via an initial hydrogen‐atom abstraction rather than halosylation. Kinetic isotope effect studies should, therefore, be able to distinguish the mechanistic pathways of CCl4 versus CHCl3. We find a novel mechanism that is different from the well accepted P450 substrate activation mechanisms reported previously. Moreover, the studies highlight the substrate specific activation pathways by P450 enzymes leading to different products. These reactivity differences are rationalized using Marcus theory equations, which reproduce experimental product distributions.  相似文献   

11.
Heme oxo-iron complexes are powerful oxygenation catalysts of environmentally benign hydroxylation processes. We have performed density functional theoretic calculations on a model system, that is, an oxo-iron-porphyrin (Por) complex [(Fe=O)Cl(Por)], and studied its reactivity toward a realistic substrate, namely, ethylbenzene. The calculations showed that the dominant reaction process in the gas phase is benzyl hydroxylation leading to 1-phenylethanol, with an energetic barrier of 9.1 kcal mol(-1), while the competing para-phenyl hydroxylation has a barrier 3.0 kcal mol(-1) higher in energy. This benzyl hydroxylation barrier is the lowest C-H hydroxylation barrier we have obtained so far for oxo-iron-porphyrin complexes. Due to electronic differences between the intermediates in the phenyl and benzyl hydroxylation processes, the phenyl hydroxylation process is considerably stabilised over the benzyl hydroxylation mechanism in environments with a large dielectric constant. In addition, we calculated kinetic isotope effects of the substitution of one or more hydrogen atoms of ethylbenzene by deuterium atoms and studied its effect on the reaction barriers. Thus, in a medium with a large dielectric constant, a regioselectivity change occurs between [H(10)]ethylbenzene and [D(10)]ethylbenzene whereby the deuterated species gives phenol products whereas the hydrogenated species gives mainly 1-phenylethanol products. This remarkable metabolic switching was analysed and found to occur due to 1) differences in strength between a C-H versus a C-D bond and 2) stabilisation of cationic intermediates in a medium with a large dielectric constant. We have compared our calculations with experimental work on synthetic oxo-iron-porphyrin catalysts as well as with enzyme-reactivity studies.  相似文献   

12.
Tri11 (now renamed as tri22) encoded cytochrome P450 monooxygenase in Trichoderma brevicompactum catalyzes the C-4 C-H hydroxylation of 12, 13-epoxytrichothec-9-ene (EPT) to produce trichodermol in the biosynthetic pathway of trichodermin/harzianum A. The density functional theory (DFT)-quantum mechanics (QM) approach is applied to elucidate the hydroxylation of EPT by using a model active species of P450 (Cpd I). The QM calculations were performed on the active site complex, to find out transition-state structure, intermediate, and product complexes for the two spin states at different potential energy surfaces. The two state reactivity rebound-free product formation resulted from the interplay of two spin states (doublet and quartet).  相似文献   

13.
14.
We describe a system setup that is applicable to all species in the catalytic cycle of cytochrome P450(cam). The chosen procedure starts from the X-ray coordinates of the ferrous dioxygen complex and follows a protocol that includes the careful assignment of protonation states, comparison between different conceivable hydration schemes, and system preparation through a series of classical minimizations and molecular dynamics (MD) simulations. The resulting setup was validated by quantum mechanical/molecular mechanical (QM/MM) calculations on the resting state, the pentacoordinated ferric and ferrous complexes, Compound I, the transition state and hydroxo intermediate of the C--H hydroxylation reaction, and the product complex. The present QM/MM results are generally consistent with those obtained previously with individual setups. Concerning hydration, we find that saturating the protein interior with water is detrimental and leads to higher structural flexibility and catalytically inefficient active-site geometries. The MD simulations favor a low water density around Asp251 that facilitates side chain rotation of protonated Asp251 during the conversion of Compound 0 to Compound I. The QM/MM results for the two preferred hydration schemes (labeled SE-1 and SE-4) are similar, indicating that slight differences in the solvation close to the active site are not critical as long as camphor and the crystallographic water molecules preserve their positions in the experimental X-ray structures.  相似文献   

15.
A cyclin-dependent kinase, Cdk2, catalyzes the transfer of the gamma-phosphate from ATP to a threonine or serine residue of its polypeptide substrates. Here, we investigate aspects of the reaction mechanism of Cdk2 by gas-phase density functional calculations, classical molecular dynamics, and Car-Parrinello QM/MM simulations. We focus on the role of the conserved Asp127 and on the nature of the phosphoryl transfer reaction mechanism catalyzed by Cdk2. Our findings suggest that Asp127 is active in its deprotonated form by assisting the formation of the near-attack orientation of the substrate serine or threonine. Therefore, the residue does not act as a general base during the catalysis. The mechanism for the phosphoryl transfer is a single SN2-like concerted step, which shows a phosphorane-like transition state geometry. Although the resulting reaction mechanism is in agreement with a previous density functional study of the same catalytic reaction mechanism (Cavalli et al., Chem. Comm. 2003, 1308-1309), the reaction barrier is considerably lower when QM/MM calculations are performed, as in this study ( approximately 42 kcal mol(-1) QM vs. approximately 24 kcal mol(-1) QM/MM); this indicates that important roles for the catalysis are played by the protein environment and solvent waters. Because of the high amino acid sequence conservation among the whole family of cyclin-dependent kinases (CDKs), these results could be general for the CDK family.  相似文献   

16.
The hydroxylation of nonreactive C−H bonds can be easily catalyzed by a variety of metalloenzymes, especially cytochrome P450s (P450s). The mechanism of P450 mediated hydroxylation has been intensively studied, both experimentally and theoretically. However, understanding the regio- and stereoselectivities of substrates hydroxylated by P450s remains a great challenge. Herein, we use a multi-scale modeling approach to investigate the selectivity of testosterone (TES) and dihydrotestosterone (DHT) hydroxylation catalyzed by two important P450s, CYP3A4 and CYP19A1. For CYP3A4, two distinct binding modes for TES/DHT were predicted by dockings and molecular dynamics simulations, in which the experimentally identified sites of metabolism of TES/DHT can access to the catalytic center. The regio- and stereoselectivities of TES/DHT hydroxylation were further evaluated by quantum mechanical and ONIOM calculations. For CYP19A1, we found that sites 1β, 2β and 19 can access the catalytic center, with the intrinsic reactivity 2β>1β>19. However, our ONIOM calculations indicate that the hydroxylation is favored at site 19 for both TES and DHT, which is consistent with the experiments and reflects the importance of the catalytic environment in determining the selectivity. Our study unravels the mechanism underlying the selectivity of TES/DHT hydroxylation mediated by CYP3A4 and CYP19A1 and is helpful for understanding the selectivity of other substrates that are hydroxylated by P450s.  相似文献   

17.
Herein we demonstrate that a small panel of variants of cytochrome P450 BM3 from Bacillus megaterium covers the breadth of reactivity of human P450s by producing 12 of 13 mammalian metabolites for two marketed drugs, verapamil and astemizole, and one research compound. The most active enzymes support preparation of individual metabolites for preclinical bioactivity and toxicology evaluations. Underscoring their potential utility in drug lead diversification, engineered P450 BM3 variants also produce novel metabolites by catalyzing reactions at carbon centers beyond those targeted by animal and human P450s. Production of a specific metabolite can be improved by directed evolution of the enzyme catalyst. Some variants are more active on the more hydrophobic parent drug than on its metabolites, which limits production of multiply‐hydroxylated species, a preference that appears to depend on the evolutionary history of the P450 variant.  相似文献   

18.
Synthetic overcrowded alkene‐based molecular motors achieve 360° unidirectional rotary motion of one motor half (rotator) relative to the other (stator) through sequential photochemical and thermal isomerisation steps. In order to facilitate and expand the use of these motors for various applications, it is important to investigate ways to increase the rates and efficiencies of the reactions governing the rotary motion. Here, we use computational methods to explore whether the thermal isomerisation performance of some of the fastest available motors of this type can be further improved by reducing the sizes of the motor halves. Presenting three new redesigned motors that combine an indanylidene rotator with a cyclohexadiene, pyran or thiopyran stator, we first use multiconfigurational quantum chemical methods to verify that the photoisomerisations of these motors sustain unidirectional rotary motion. Then, by performing density functional calculations, we identify both stepwise and concerted mechanisms for the thermal isomerisations of the motors and show that the rate‐determining free‐energy barriers of these processes are up to 25 kJ mol?1 smaller than those of the original motors. Furthermore, the thermal isomerisations of the redesigned motors proceed in fewer steps. Altogether, the results suggest that the redesigned motors are useful templates for improving the thermal isomerisation performance of existing overcrowded alkene‐based motors.  相似文献   

19.
20.
The selective hydroxylation of benzene to phenol, without the formation of side products resulting from overoxidation, is catalyzed by cytochrome P450BM3 with the assistance of amino acid derivatives as decoy molecules. The catalytic turnover rate and the total turnover number reached 259 min−1 P450BM3−1 and 40 200 P450BM3−1 when N‐heptyl‐l ‐proline modified with l ‐phenylalanine (C7‐l ‐Pro‐l ‐Phe) was used as the decoy molecule. This work shows that amino acid derivatives with a totally different structure from fatty acids can be used as decoy molecules for aromatic hydroxylation by wild‐type P450BM3. This method for non‐native substrate hydroxylation by wild‐type P450BM3 has the potential to expand the utility of P450BM3 for biotransformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号