首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The effect of UV radiation (UVR) on juvenile Atlantic salmon (Salmo salar) was assessed by measuring the fatty acid (FA) profiles of muscle, dorsal and ventral skin, and ocular tissues following 4-month long exposures to four different UVR treatments in outdoor rearing tanks. Fish were fed two different diets (Anchovy- and Herring-oil based) that differed in polyunsaturated fatty acid (PUFA) concentrations. Anchovy-fed salmon had higher concentrations of ALA (alpha-linoleic acid; 18:3n-3), EPA (eicosapentaenoic acid; 20:5n-3) and DPA (docosapentaenoic acid, 22:5n-3) in their muscle tissues than fish fed the Herring feed. Fish subjected to enhanced UVB levels had higher concentrations of LIN (linolenic acid, 18:2n-6) and ALA, total omega-6 FA and SAFA (saturated fatty acids) in their tissues compared with fish in reduced UV treatments. Concentrations of ALA, LIN, GLA (gamma-linolenic acid; 18:3n-6), EPA, PUFA and total FA were higher in ventral skin of fish exposed to enhanced UVB compared with fish in reduced UV treatments. Salmon exposed to reduced UV weighed more per-unit-length than fish exposed to ambient sunlight. The FA profiles suggest that fish exposed to UV radiation were more quiescent than fish in the reduced UV treatments resulting in a buildup of catabolic substrates.  相似文献   

2.
Modern dietary habits have created the need for the design and production of functional foods enriched in bioactive compounds for a healthy lifestyle. However, the fate of many of these bioactive compounds in the human gastrointestinal (GI) tract has not been thoroughly investigated. Thus, in the present study, the bioaccessibility of omega-3 fatty acids was examined. To that end, different foods and supplements underwent simulated digestion following the INFOGEST protocol. The selected samples were foods rich in omega-3 fatty acids both in free and bound form—i.e., dietary fish oil supplements, heat-treated fish, and eggs enriched with omega-3 fatty acids. The oxidation of polyunsaturated fatty acids (PUFAs) was measured at each stage of the digestion process using peroxide value (PV) and TBARS and by quantifying individual omega-3 fatty acids using a gas chromatograph with flame ionization detector (GC-FID). The final bioaccessibility values of omega-3 fatty acids were determined. Changes in the quantity of mono-saturated fatty acids (MUFAs) and saturated fatty acids (SFAs) were recorded as well. The results indicated a profound oxidation of omega-3 fatty acids, giving rise to both primary and secondary oxidation products. Additionally, stomach conditions seemed to exert the most significant effect on the oxidation of PUFAs during digestion, significantly decreasing their bioaccessibility. The oxidation rate of each fatty acid was found to be strongly correlated with its initial concentration. Finally, the oxidation pattern was found to be different for each matrix and emulsified lipids seemed to be better protected than non-emulsified lipids. It is concluded that digestion has a profound negative effect on omega-3 bioaccessibility and therefore there is a need for improved protective mechanisms.  相似文献   

3.
The essential fatty acid alpha-linolenic acid (ALA) is present in high amounts in oils such as flaxseed, soy, hemp, rapeseed, chia, and perilla, while stearidonic acid is abundant in echium oil. ALA is metabolized to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by desaturases and elongases in humans. The conversion of ALA to EPA and DHA is limited, and these long-chain n−3 polyunsaturated fatty acids (PUFAs) are mainly provided from dietary sources (fish and seafood). This review provides an overview of studies that explored the effects of dietary supplementation with ALA in obesity and related diseases. The obesity-associated changes of desaturase and elongase activities are summarized, as they could influence the metabolic conversion of ALA. Generally, supplementation with ALA or ALA-rich oils leads to an increase in EPA levels and has no effect on DHA or omega-3 index. According to the literature data, stearidonic acid could enhance conversion of ALA to long-chain n−3 PUFA in obesity. Recent studies confirm that EPA and DHA intake should be considered as a primary dietary treatment strategy for improving the omega-3 index in obesity and related diseases.  相似文献   

4.
Microalgae is a rich source of polyunsaturated fatty acid. This study was conducted to identify and isolate microalgal strain with the potentials for producing polyunsaturated fatty acids (PUFAs) and determine its cytotoxic effect on some cancer cells. The algal strain (Chlorella sp. S14) was cultivated using modified BG-11 media, and algal biomass obtained was used for fatty acid extraction. Gas chromatographic–mass spectrometry was used to identify and quantify the levels of the fatty acid constituents. The total content of monounsaturated fatty acids (1.12%) was low compared to polyunsaturated fatty acids (PUFAs) (52.87%). Furthermore, n-3 PUFAs accounted for (12.37%) of total PUFAs with the presence of α-linolenic acid (2.16%) and cis-11,14,17-eicosatrienoic acid (2.16%). The PUFA-rich extract did not exhibit a cytotoxic effect on normal cells. Treatment with the PUFA-rich extract (150 µg/mL) significantly reduced cell viability in MCF-7 (31.58%) and A549 (62.56%) cells after the 48 h treatment. Furthermore, treatment of MCF-7 with fatty acid extracts (125 and 150 µg/mL) showed a significant reduction in MDA levels, increase in catalase activities and decrease in GSH level compared to untreated cells. However, a slight decrease in MDA level was observed in A549 cells after the 48 h treatment. There are no significant changes in catalase activities and GSH level in treated A549 cells. However, a slight reduction of NO levels was observed in treated MCF-7 and A549 cells. These results indicate the potentials of PUFA-rich extracts from Chlorella sp. S14 to reduce viability and modulate redox status in A549 and MCF-7 cells.  相似文献   

5.
The valorization of food industry by-products as sources of bioactive compounds is at the forefront of research in functional foods and nutraceuticals. This study focuses on bioactives of apple cider by-products (ACBPs) with putative cardio-protective properties. Total lipids (TLs) were extracted from ACBPs of apple varieties that are low (ACBP1), medium (ACBP2), and high (ACBP3) in tannins and were further separated into polar lipids (PLs) and neutral lipids (NLs). The functionality of these lipid extracts and of their HPLC-derived lipid fractions/PL subclasses were assessed in vitro against human platelet aggregation induced by the thrombotic and inflammatory platelet agonists platelet-activating factor (PAF) and adenosine diphosphate (ADP). The fatty acid profile of PLs and their most bioactive lipid fractions were evaluated by GC–MS analysis. The PL extracts exhibited higher specificity against the PAF-induced platelet aggregation compared to their anti-ADP effects, while TL and NL showed lower bioactivities in all ACBPs. HPLC analysis unveiled that the most bioactive PL from all ACBPs were those in PL fraction 3 containing phosphatidylcholines (PCs). PLs from all ACBPs and their PC bioactives were rich in polyunsaturated fatty acids (PUFAs) and especially in the essential omega-6 (n-6) linoleic acid (LA) and omega-3 (n-3) alpha linolenic acid (ALA), with favorably low values of the n-6/n-3 PUFA ratio, thus providing a rationale for their higher anti-inflammatory bioactivities. Within this study, highly bioactive PL compounds with strong anti-inflammatory and anti-platelet properties were identified in ACBPs, which can be potentially utilized for producing cardio-protective functional foods and/or nutraceuticals.  相似文献   

6.
Diets with high daily fat consumption are associated with excess weight. However, the effects of fat type and consumption timing on excess weight remain unclear. We investigated the selection of a 30% (w/w) fat diet of soybean oil (SOY), lard (LARD), and fish oil (FISH) on the metabolic parameters of mice. Male C57BL/6 mice were divided into the double SOY-box (w-SOY), SOY-box/LARD-box (SOY-vs-LARD), or SOY-box/FISH-box (SOY-vs-FISH) groups and allowed to selectively consume for 8 weeks. The total energy intake was similar for all groups, but the mice selectively chose to consume LARD over SOY and SOY over FISH. Body weight in the SOY-vs-LARD group was significantly higher than that in the w-SOY and SOY-vs-FISH groups. Additionally, minimal but selective consumption of an omega-3 fatty-acid-rich FISH diet at the end of the active period increased the physiological fatty acid compositions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the SOY-vs-FISH group; their metabolic parameters were also lower than the SOY-vs-LARD group. In conclusion, selectively consuming small amounts of fish oil at the end of the day may prevent excess weight compared with LARD consumption.  相似文献   

7.
The effect of lipid composition on the distribution of free radical oxidation products derived from arachidonic acid (20:4) esters has been studied in vitro and in vivo. Pro-inflammatory prostaglandin (PG) F2-like compounds, termed F2-isoprostanes (IsoPs), are produced in vivo and in vitro by the free radical-catalyzed peroxidation of arachidonic acid. Controlled free radical oxidation of mixtures of fatty acid esters in vitro showed that the formation of IsoPs from arachidonate is dramatically influenced by the presence of other fatty acid esters in the reaction mixture. Thus, three lipid mixtures containing the same arachidonate concentration but different amounts of other fatty esters (16:0; 18:1; 18:2; 20:5, and 22:6) were oxidized, and the product yields were determined by GC and LC/MS/MS analysis. The yield of F2-IsoP formed after 1 h of oxidation was 18% (based on arachidonate consumed) for mixtures containing arachidonate as the only oxidizable PUFA, but yields of these biologically active compounds dropped to 6% in polyunsaturated fatty acid (PUFA) mixtures typical of those found in tissues of fish oil-fed animals. F2-IsoP levels were also monitored in the livers of mice on diets supplemented with eicosapentaenoic acid (C20:5 omega-3; EPA), the PUFA most abundant in fish oil. While the level of arachidonic acid present in livers was not significantly different from that in control animals, levels of IsoPs in the liver were reduced in the EPA-fed mice compared to those in controls under conditions of oxidative stress (60 +/- 25% reduction, n = 5) or at baseline (48 +/- 14% reduction, n = 5). These results suggest that dietary omega-3 PUFAs may influence the formation of bio-active peroxidation products derived from omega-6 PUFAs by channeling the free radical pathway away from the F2-IsoPs.  相似文献   

8.
The composition of the lipophilic extract of the sponge Myrmekioderma granulata (Esper) collected from 13 m depth of the Bay of Bengal of the Orissa coast was investigated. Fatty acids as well as volatiles and sterols were identified. 4,8,12-Trimethyltridecanoic acid was identified for the first time along with the important PUFAs such as linoleic acid (n-6, C18:2), dihomo-γ-linolenic acid (n-6, C20:3), 5,8,11,14-eicosatetraenoic acid (n-3, C20:4), and 5,8,11,14,17-eicosapentaenoic acid (EPA) (n-3, C20:5) from this species. The branched polyunsaturated fatty acids like br-C26:2, 25-methyl-5,9-heptacosadienoic acid and 24-methyl-5,9heptacosadienoic acid were also identified by GC-MS. The lipid extract exhibited limited activity against different pathogens.  相似文献   

9.
Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope 13C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, 13C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, 13C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-13C-labelled fatty acids using U-13C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of 13C-labelled DHA has been achieved with high chemical purity ( >99%) and high 13C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-13C-DHA was enzymatically re-esterified to glycerol to yield a 13C-labelled tridocosahexaenoin.  相似文献   

10.
Novel fatty acids originated from the cold-seep clam Calyptogena phaseoliformis, collected from hydrothermal vents in the Japan Trench at a depth of 6354-6367 m, were determined by using gas chromatography-mass spectrometry analysis of the 4,4-dimethyloxazoline derivatives. The major fatty acids present in the C. phaseoliformis lipids belong to the n-4 family non-methylene interrupted polyunsaturated fatty acids (NMI-PUFA): 20:3n-4,7,15, 20:4n-1,4,7,15, and 21:3n-4,7,16, with significant levels of 20:2n-7,15 and 21:2n-7,16 as non-methylene interrupted n-7 dienes. Compared with the lipids of shallow-water clam Mactra chinensis, which contains photosynthetic n-3 PUFA, such as docosahexaenoic acid and icosapentaenoic acid, C. phaseoliformis might have an intrinsic mechanism in vivo so as to maintain the fluidity of the high-melting fatty acids in the membrane lipids by exogenous n-4 family PUFA adaptation as substitutes. Such special kinds of fatty acids are assimilated by the symbiotic chemosynthetic bacteria, which use geothermal energy and minerals from the cold-seep vents. Its unique fatty acid composition corresponding to the novel n-4 family NMI-PUFA markedly differs from those of the reported lipid compositions of other marine animals, which depend on the marine grazing food chain originating from phytoplankton. Thus, the present findings confirm a perfect and closed novel food chain in the cold-seep bivalve and in its symbionts, which is independent from the photosynthetic food chain.  相似文献   

11.
A balanced ratio of fatty acids n-6 to n-3 in chicken eggs is important for health and to help prevent and manage obesity and other diseases. Traditionally, fish oil or flax seed has been utilized as feed additives to decrease the ratio of n-6 to n-3(n-6:n-3) fatty acids in eggs. The hull of spina date seed(HSDS) is a common agricultural waste product in China, from which wood vinegar(HSDSWV) may be derived. This study evaluated HSDSWV as a supplement in hen feeds to improve the quality of eggs and decrease the ratio of fatty acids n-6:n-3. HSDSWV was obtained via carbonization, and refined. Six concentrations(nil to 0.5%) of HSDSWV were prepared and fed to 6 hen groups, respectively, for 50 d. The fatty acids of the hen's egg yolks were analyzed by gas chromatography/electron ionization-mass spectrometry(GC/EI-MS) in the selected ion monitoring(SIM) mode. The 0.2% HSDSWV resulted in the best egg yolk quality, with a lower percentage of linoleic acid(C18:2n6) and higher percentages of cis-5,8,11,14,17-eicosapentaenoic acid(C20:5n3) and cis-4,7,10,13,16,19-docosahexaenoic acid(C22:6n3), and thus a lower n-6:n-3 ratio compared with the other HSDSWV concentrations. In addition, the eggs contained higher levels of yolk fat and egg yolk than the controls did. In conclusion, to modify the fatty acid composition of hens' eggs and obtain a balanced ratio of n-6:n-3, 0.2% HSDSWV may be considered suitable as a dietary supplement in hens' feed.  相似文献   

12.
Every year, thousands of tons of fruit seeds are discarded as agro-industrial by-products around the world. Fruit seeds are an excellent source of oils, monounsaturated fatty acids, and n-6 and n-3 polyunsaturated essential fatty acids. This study aimed to develop a novel technology for extracting active substances from selected seeds that were obtained after pressing fruit juices. The proposed technology involved sonification with the use of ethyl alcohol at a low extraction temperature. Seeds of four species—blueberry (Vaccinium myrtillus L.), raspberry (Rubus idaeus), cranberry (Vaccinium macrocarpon), and cuckooflower (Cardamine pratensis)—were used for extraction. Following alcohol evaporation under nitrogen, the antioxidant activity, chemical composition, and volatile compounds of the obtained extracts were analyzed using chromatographic methods, including gas chromatography (GC)–mass spectrometry (MS) (GC–MS/MS), and high-performance liquid chromatography–MS. We analyzed physicochemical properties, fatty acid, and volatile compounds composition, sterol and tocochromanol content of blueberry, cranberry, raspberry, and cuckooflower seed oils obtained by sonication. This method is safe and effective, and allows for obtaining valuable oils from the seeds.  相似文献   

13.
Herein we report the first total synthesis of RvD2n-3 DPA, an endogenously formed mediator biosynthesized from the omega-3 fatty acid n-3 docosapentaenoic acid. The key steps are the Midland Alpine borane reduction, Sonogashira cross-coupling reactions, and a Z-selective alkyne reduction protocol, yielding RvD2n-3 DPA methyl ester in 13 % yield over 12 steps (longest linear sequence). The physical property data (UV chromophore, chromatography and MS/MS fragmentation) of the synthetic lipid mediator matched those obtained from biologically produced material. Moreover, synthetic RvD2n-3 DPA also carried the potent biological activities of enhancing macrophage uptake of Staphylococcus aureus and zymosan A bioparticles.  相似文献   

14.
Abstract

Chemical characteristics of novel seed oils, yet not investigated, from three endemic Arecaceae (palm) species from Reunion Island are described. Fatty acid profiles are performed using two-dimensional gas chromatography-mass spectrometry. Carotenoid contents are determined by high performance liquid chromatography-mass spectrometry. The results of the investigations emphasize the particular composition of the unconventional red seed oil from Hyophorbe indica. Characteristic features of this oil reveal a high degree of unsaturation (50% of polyunsaturated fatty acids, with a high content (17%) of omega-3), which is possibly a unique fatty acid composition in the Arecaceae family. The two other palm oils from Dictyosperma album and Latania lontaroides contain high level of saturated fatty acids very similar to that of the edible palm oil. H. indica oil is also very rich in valuable carotenoids; in particular, lutein, β-carotene and lycopene are detected in a high content (respectively 45, 23 and 35?mg.kg?1 in oil).  相似文献   

15.
The nonhydroxy fatty acid composition of rat brain lipids (except gangliosides) was determined by support-coated open-tubular (SCOT) gas chromatography. Fatty acids of both odd and even chain lengths ranging from C14 to C26 were detected. Brain lipids contained 49% saturated, 29% monounsaturated, and 22% polyunsaturated fatty acids. Monoenoic fatty acids were mainly of the omega-9 and omega-7 series with minor amounts of omega-10 and amega-11 isomers. Dienes and trienes consisted of omega-6, amega-7, and omega-9 series. Tetraenes were of the omega-6 series. Small amounts of omega-6 and omega-3 pentaenes were detected. The most abundant polyunsaturated fatty acid was 22:6omega-3. The advantages of support-coated open-tubular columns over wall-coated open-tubular columns for the analysis of brain lipid fatty acids are discussed.  相似文献   

16.
To determine the segment along the carcinogenic continuum at which dietary lipid exerts its principal effect, six groups of 35 Skh-HR-1 hairless mice were placed on defined isocaloric diets containing either 0.75%, 12% corn oil or 12% menhaden oil as sources of omega-6 or omega-3 fatty acids, respectively. All animals received an 11 week course of UV-radiation from fluorescent sunlamps. Upon termination of UV, diets of some groups were crossed-over to either low fat, high fat, omega-6 or omega-3 fatty acid sources. The first tumor appeared at week 14. Life-table analysis of the tumor incidence curves and Wilcoxon tests of tumor multiplicity provided evidence that high corn oil diets significantly (P < 0.01) enhance carcinogenic expression; that tumor enhancement by the omega-6 fatty acid source occurs during the post-initiation, or promotion, stage; that replacement with a low corn oil diet after UV-initiation will negate the exacerbating effect of high corn oil; and that an omega-3 fatty acid source inhibits UV-carcinogenesis even at high dietary levels, although not during the post-initiation stage.  相似文献   

17.
Quantitative determination of omega-6 and omega-3 polyunsaturated fatty acids in human plasma and urine with high accuracy and precision provides significant information to monitor the underlying etiology of several diseases. In this regard, liquid chromatography-mass spectrometry is a good choice owing to its great selectivity and sensitivity. Additionally, the hybrid quadrupole–time of flight–mass spectrometer systems provides easy identification of target compounds with superior mass measurements. In this study, an analytical method has been developed for simple, accurate and simultaneous determination of linoleic acid, arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid in a short chromatographic analysis period. The developed method is suitable for the quantitative detection of these four compounds with detection limits ranging between 1.1–3.0 ng ml−1 and its applicability was assessed in human urine and plasma samples. As a result, acceptable accuracy (between 83 and 111%) and good precision (<6%) were obtained for target compounds using matrix matching calibration strategy.  相似文献   

18.
Li  Danli  Schr&#;der  Markus  Vetter  Walter 《Chromatographia》2012,75(1-2):1-6

Fish oil is considered a healthy food due to the presence of large amounts of polyunsaturated fatty acids (PUFAs), especially in the form of n-3 fatty acids 5,8,11,14,17-eicosapentaenoic acid (20:5n-3; EPA) and 4,7,10,13,16,19-docosahexaenoic acid (22:6n-3; DHA). However, fish oil is known to contain many other PUFAs, some of which are uncommon and whose bioactivity is scarcely investigated. In this study, we isolated the rare PUFA 6,9,12,15-hexadecatetraenoic fatty acid (16:4n-1) which bears a double bond on the terminal carbon from fish oil in form of its methyl ester. We used high-speed counter-current chromatography (HSCCC) for the fractionation of 500 mg-portions of fatty acid methyl esters prepared from a fish oil capsule and investigated the fractions by GC/MS. Twenty-eight 13-mL fractions were collected and fatty acid methyl esters were detected in fractions 11–23. The elution was carried out in normal phase mode, providing the long-chained saturated and monoenoic fatty acids first. More than 100 fatty acids ranging from 10:0 to 26:0 could be identified in the HSCCC fractions, and most of them were polyunsaturated. The reproducibility of the HSCCC method was shown by repeated injection of the fish oil and the fractions containing 6,9,12,15-hexadecatetraenoic fatty acid (16:4n-1). The late eluting 16:4n-1 methyl ester was isolated in pure form and its structure was verified.

  相似文献   

19.
Total fatty-acid (FA) contents of different organs (stomach, liver, brain, and skin) of two Antarctic fish, marbled rockcod (Notothenia rossii) and mackerel icefish (Champsocephalus gunnari), were examined using gas chromatography–mass spectrometry (GC–MS). N. rossii possessed higher contents of total omega-3, where eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the most represented omega-3 FAs, were distributed throughout all parts of the fish. The highest level of EPA was observed in the skin and that of DHA was observed in the brain of N. rossii. C. gunnari showed organ peculiarity in that most of the omega-3 FAs were found in stomach and skin. Specifically, the highest levels of EPA and DHA were both observed in the stomach. Although N. rossii and C. gunnari both inhabit the Antarctic Southern Oceans, their characteristics in terms of the composition of fatty acids were shown to vary. The extracts were also evaluated for matrix metalloproteinase-1 (MMP-1)-inhibitory activities in UVB-induced human dermal fibroblasts, where extracts of the skin and liver of N. rossii showed the most significant inhibition upon MMP-1 production. These findings provide experimental evidence that the extracts of the Antarctic fish could be utilized as bioactive nutrients, particularly in the enhancement of skin health.  相似文献   

20.
Microalgae have a great potential for the production of healthy food and feed supplements. Their ability to convert carbon into high-value compounds and to be cultured in large scale without interfering with crop cultivation makes these photosynthetic microorganisms promising for the sustainable production of lipids. In particular, microalgae represent an alternative source of polyunsaturated fatty acids (PUFAs), whose consumption is related to various health benefits for humans and animals. In recent years, several strategies to improve PUFAs’ production in microalgae have been investigated. Such strategies include selecting the best performing species and strains and the optimization of culturing conditions, with special emphasis on the different cultivation systems and the effect of different abiotic factors on PUFAs’ accumulation in microalgae. Moreover, developments and results obtained through the most modern genetic and metabolic engineering techniques are described, focusing on the strategies that lead to an increased lipid production or an altered PUFAs’ profile. Additionally, we provide an overview of biotechnological applications of PUFAs derived from microalgae as safe and sustainable organisms, such as aquafeed and food ingredients, and of the main techniques (and their related issues) for PUFAs’ extraction and purification from microalgal biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号