首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Some of the most common microtraces that are currently collected at crime scenes are fragments of single fibers. The perpetrator leaves them at a crime scene or takes them away, for example, on their clothing or body. In turn, the microscopic dimensions of such traces mean that the perpetrator does not notice them and therefore usually does not take action to remove them. Cotton and polyester fibers dyed by reactive and dispersion dyes, respectively, are very popular within clothing products, and they are hidden among microtraces at the scene of a crime. In our recently published review paper, we summarized the possibilities for the identification of disperse dyes of polyester fibers for forensic purposes. In this review, we are concerned with cotton fibers dyed with reactive dyes. Cotton fibers are natural ones that cannot easily be distinguished on the basis of morphological features. Consequently, their color and consequently the dye composition are often their only characteristics. The presented methods for the identification of reactive dyes could be very interesting not only for forensic laboratories, but also for scientists working in food, cosmetics or pharmaceutical/medical sciences.  相似文献   

2.
胡灿  朱军  石慧霞  梅宏成  郭洪玲 《色谱》2017,35(2):143-149
纤维染料是使纤维着色的物质,其分析检测对纺织、环保、法庭科学、古文物研究等诸多领域都有重要的意义。然而纤维染料的种类繁多、成分复杂,加之高灵敏度以及原位无损检测的分析需求日益突出,使得纤维染料的分析面临挑战。尽管如此,研究人员一直致力于高效、灵敏、无损的纤维染料分析新方法和新技术的研究,目前已经开发了多种纤维染料的分析方法,这些方法可大致分为3类:光谱法、色谱法及质谱法。该文综述了纤维染料的特点及纤维染料的检测方法及最新研究进展,并对未来纤维染料检测方法的发展进行了展望,为更好地开展纤维染料的分析提供了参考。  相似文献   

3.
A thorough review of the application of solid-phase microextraction (SPME) combined with gas chromatography for the analysis of forensic specimens is presented, including experimental results for several recent applications. The SPME applications covered in this comprehensive review include ignitable liquid residues (also referred to as accelerants), explosive traces, drugs and poisons from biological specimens, and other forensic applications. Recently developed SPME methods are also presented, including the analysis of ignitable liquid residues on human skin, odor signatures, and several drug applications such as free-fraction antipsychotic drug levels, blood alcohol casework, drink-tampering analysis, and gamma-hydroxybutyrate identification without the need for derivatization. SPME is shown to be an inexpensive, rapid, and sensitive method for the analysis of a variety of forensic specimens.  相似文献   

4.
薄层色谱法分析酸性和阳离子染料   总被引:2,自引:0,他引:2  
史晓凡  王景翰  张忠伟 《色谱》1999,17(5):503-505
用相关系数法从多种展开剂中优选出酸性、阳离子染料薄层色谱分析的最佳展开剂。在相关系数最小的两种展开剂V(正丁醇)∶V(冰乙酸)∶V(水)=2∶1∶5和V(乙酸乙酯)∶V(冰乙酸)∶V(水)=50∶15∶10中,相同颜色的毛、腈纶纤维上的酸性、阳离子染料提取液及不同厂家生产的同一种染料均得到了很好的鉴别。  相似文献   

5.
Body fluids are considered one of the most important evidence types in forensic casework. The presence and location of blood, semen and saliva can provide crucial information to investigators. Current practice relies on an accurate visual examination followed by the use of presumptive tests to determine the identity of the body fluid type. Further laboratory based tests are required to unequivocally confirm the identity of a stain. Body fluid stains can be difficult to detect with the naked eye, particularly on dark backgrounds and hence vital evidence may be overlooked. Current methods are fluid-type specific, with a separate, and different, test required for each body fluid. The laborious nature of such analysis and the impossibility of being carried out at the crime scene, leads to a delay in the investigation process that could prove detrimental to the solving of the case. Hence, there is a need for sensitive, specific and direct methods which can simultaneously detect, differentiate, and locate human fluids on items of forensic evidence. Here, we describe the preparation of functionalized iron oxide nanoparticles conjugated to antibodies specific to blood and saliva components and their use in detecting small traces against non-contrasting substrates including glass, ceramic tile, paper and black fabric. The advantage of our technique is that it can simultaneously detect blood and saliva and can spatially locate and differentiate these body fluid types. Most importantly, our technology, which exploits the superparamagnetic properties of iron oxide nanoparticles, works in situ with no need to remove the body fluid stains for testing and with no washing steps and does not interfere with downstream DNA profiling. Thus, our technology represents a novel and effective alternative to existing methods.  相似文献   

6.
We have used MALDI-TOF mass spectrometry to characterize a selection of dyes from the Schweppe dye collection and pigments from the Tate Gallery collection. MALDI-TOF mass spectra of such samples are easily obtained and, through observation of both positive and negative ion spectra, provide a convenient, versatile method for dye characterization and identification. Such pairs of positive and negative ion spectra immediately distinguish between acidic and basic dyes and provide the characteristic mass of either the molecular ion or a simply related fragment ion. This approach is especially useful in situations where very small amounts of analyte are available, as in museum research and forensic analysis. In the case of textile dyes, we have carried out identification on material from single fibers and, with insoluble pigments, have begun to identify components of historically important pastel sticks from submicrogram samples.  相似文献   

7.
Forensic DNA samples can degrade easily due to exposure to light and moisture at the crime scene. In addition, the amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. The accurately quantified extracted genomic DNA is then used as a DNA template in polymerase chain reaction (PCR) amplification for short tandem repeat (STR) human identification. Accordingly, highly sensitive and human-specific quantification of forensic DNA samples is an essential issue in forensic study. In this work, a quantum dot (Qdot)-labeled Alu sequence was developed as a probe to simultaneously satisfy both the high sensitivity and human genome selectivity for quantification of forensic DNA samples. This probe provided PCR-free determination of human genomic DNA and had a 2.5-femtogram detection limit due to the strong emission and photostability of the Qdot. The Qdot-labeled Alu sequence has been used successfully to assess 18 different forensic DNA samples for STR human identification.  相似文献   

8.
Eight textile dye compounds including five cationic dyes, namely, basic blue 41, basic blue 9, basic green 4, basic violet 16 and basic violet 3, and three anionic dyes, acid green 25, acid red 1 and acid blue 324, were separated and detected by non-aqueous capillary electrophoresis (NACE) with electrochemical detection. Simultaneous separations of acid and basic dyes were performed using an acetonitrile-based buffer. Particular attention was paid to the determination of basic textile dyes. The optimized electrophoresis buffer for the separation of basic dyes was a solvent mixture of acetonitrile/methanol (75:25, v/v) containing 1 M acetic acid and 10 mM sodium acetate. The limits of detection for the basic dyes were in the range of 0.1–0.7 μg mL−1. An appropriate solid-phase extraction procedure was developed for the pre-treatment of aqueous samples with different matrices. This analytical approach was successfully applied to various water samples including river and lake water which were spiked with textile dyes.  相似文献   

9.
A number of nuclear technologies developed and applied at the Savannah River Site in support of nuclear weapons material production and environmental remediation can be applied to problems in law enforcement. Techniques and equipment for high-sensitivity analyses of samples are available to identify and quantify trace elements and establish origins and histories of forensic evidence removed from crime scenes. While some of these capabilities are available at local crime laboratories, state-of-the-art equipment and breakthroughs in analytical techniques are continually being developed at DOE laboratories. Extensive experience with the handling of radioactive samples at the DOE labs minimizes the chances of cross-contamination of evidence received from law enforcement. In addition to high-sensitivity analyses, many of the field techniques developed for use in a nuclear facility can assist law enforcement personnel in detecting illicit materials and operations, in retrieving of pertinent evidence and in surveying crime scenes. Some of these tools include chemical sniffers, hand-held detectors, thermal imaging, etc. In addition, mobile laboratories can be deployed to a crime scene to provide field screening of potential evidence. A variety of portable sensors can be deployed on vehicle, aerial, surface or submersible platforms to assist in the location of pertinent evidence or illicit operations. Several specific nuclear technologies available to law enforcement and their potential uses are discussed.  相似文献   

10.
《印度化学会志》2021,98(4):100019
Nanotechnology is a promising field and has diverse applications. Primarily, nanoparticles have been synthesized via chemical and physical methods. Dyes are synthetic organic compounds that are abundantly used in industries especially in textile industry. The use of these dyes is major contributors towards environmental pollution. Their hazardous nature raises great concerns in general public. Advancement in nanotechnology can efficiently help in mitigating this problem as nanoparticles can efficiently convert these harmful dyes into less harmful chemical byproducts through a process called Photocatalysis. Although, different approaches have been used for the synthesis of nanoparticles and their Photocatalytic activity but the most efficient approach is the green synthesis using different plants. This approach is environment-friendly and cost-effective. In order to reduce the toxic effects of synthetic dyes that pollutes the environment, it is important to look for such environmental friendly approaches and highlight the role of green nanotechnology in photocatalysis. In the present review paper, we for the first time have summarized the application of biogenic nanoparticles used as Photocatalytic agent in the degradation of different dyes such MB, MO and MR. We have presented a comprehensive review of chemistry/engineering approach of the technology along with mechanistic aspects. Furthermore, key applications of nanotechnology in Photocatalysis have been discussed along with futuristic insight.  相似文献   

11.
The use of continuous-flow isotope-ratio mass spectrometry (CF-IRMS) as a tool in soil analysis has been assessed as part of a larger study using a number of geological techniques applied in a forensic context. Carbon and nitrogen isotopic ratios, delta13C and delta15N, have been analysed to investigate situations which have arisen from crime casework. Three questions have been addressed: the role of spatial variation found over the short-scale (less than 20 m), temporal variation over a period of almost 2 years, and the variation found between source soils and soil transferred to footwear soles during a simple one-stage transfer process. Results are presented for the three experiments. The use of carbon and nitrogen isotopes has been shown to be useful in discriminating between soil types and sample locations, even when sampling occurs at a different time (as might be the case with a crime scene). In cases of primary transfer (from a source soil by a one-stage transfer to another surface, in this case, shoes and boots), the combination of carbon and nitrogen isotope ratios is a valuable tool in discriminating between sites and in showing the relationship of the transferred samples to the relevant source soils. Used in combination with other analytical techniques, isotopic analysis may prove to be a useful tool in a forensic context.  相似文献   

12.
Some types of textile fibres are considered to be the cause of allergic reactions and other adverse health effects on humans. The main compounds behind these health problems usually contain azo groups in their chemical structure, which are widely employed as azo dyes in the manufacture of textile and clothing products. In this respect, availability of simple analytical procedures for identifying azo groups in textiles is of concern, not only for toxicological studies, but also for clinical and forensic investigations. In this work, conventional Raman spectrometry was assessed as an analytical tool for identification of the azo function in the extracts of fibres obtained after applying a liquid-solvent extraction procedure to the polyester-based textile products. A medium-polarity solvent of ethanol-diethyl ether (1:1 mixture) was shown to be the most effective extraction medium. Two laser lines at 514.5 nm and 785 nm were compared, with the longer wavelength preferred as additional peaks were identified in the Raman spectrum, which had better signal-to-background and signal-to-noise ratios owing to decreased fluorescence in contrast to excitation at 514.5 nm. The method reported is a convenient procedure that can be applied in many instances when rapid screening of fibre dyes is required.  相似文献   

13.
Isotope ratio mass spectrometry (IRMS) was used to assess what contribution the technique could make towards the comparative analysis of matchstick samples within the 'normal' framework of a forensic investigation. A method was developed to allow the comparison of samples submitted as a result of an investigation, with the added advantage of rapid sample turn-around expected within this field. To the best of our knowledge this is the first time that wooden safety matches have been analysed using IRMS. In this particular case, bulk stable isotope analysis carrried out on a 'like-for-like' basis could demonstrate conclusively that matches seized from a suspect were different from those collected at the scene of crime. The maximum delta13C variability observed within one box was 2.5 per thousand, which, in conjunction with the error of measurement, was regarded to yield too wide an error margin as to permit differentiation of matchsticks based on 13C isotopic composition alone given that the 'natural' 13C abundance in wood ranges from -20 to -30 per thousand. However, from the delta2H values obtained for crime scene matches and seized matches of -114.5 per thousand and -65 per thousand, respectively, it was concluded that the matches seized were distinctly different from those collected at the crime scene.  相似文献   

14.
Blood is one of the most common and informative forms of biological evidence found at a crime scene. A very crucial step in forensic investigations is identifying a blood stain’s origin. The standard methods currently employed for analyzing blood are destructive to the sample and time-consuming. In this study, attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy is used as a confirmatory, nondestructive, and rapid method for distinction between human and animal (nonhuman) blood. Partial least squares-discriminant analysis (PLS-DA) models were built and demonstrated complete separation between human and animal donors, as well as distinction between three separate species: human, cat, and dog. Classification predictions of unknown blood donors were performed by the model, resulting in 100 % accuracy. This study demonstrates ATR FT-IR spectroscopy’s great potential for blood stain analysis and species discrimination, both in the lab and at a crime scene since portable ATR FT-IR instrumentation is commercially available.  相似文献   

15.
The electrospray (ES) behaviour of selected Remazol textile dyes, their hydrolysis products and the latters' reaction, following elution from a strong anion-exchange cartridge, with 30% concentrated HCl in MeOH, is studied and applied to the direct analysis of dye containing effluent. For unambiguous identification and determination of these textile dyes in effluents, it is necessary to resort to ES utilising MS-MS and MS3. Further, a tabular review of recent applications of HPLC-ES-MS and, to a lesser extent, CE-ES-MS with reference to drug and pesticide analysis is presented.  相似文献   

16.
Synthetic fibers are one of the most valuable trace lines of evidence that can be found in crime scenes. When textile fibers are analyzed properly, they can help in finding a linkage between suspect, victim, and the scene of the crime. Various analytical techniques are used in the examination of samples to determine relationships between different fabric fragments. In this exploratory study, multivariate statistical methods were investigated in combination with machine learning classification models as a method for classifying 138 synthetic textile fibers using Fourier transform infrared spectroscopy, FT-IR. The data were first subjected to preprocessing techniques including the Savitzky–Golay first derivative method and Standard Normal Variate (SNV) method to smooth the spectra and minimize the scattering effects. Principal Component Analysis (PCA) was built to observe unique patterns and to cluster the samples. The classification model in this study, Soft Independent Modeling by Class Analogy (SIMCA), showed correct classification and separation distances between the analyzed synthetic fiber types. At a significance level of 5%, 97.1% of test samples were correctly classified.  相似文献   

17.
Systematic designed experiments were employed to find the optimum conditions for extraction of direct, reactive, and vat dyes from cotton fibers prior to forensic characterization. Automated microextractions were coupled with measurements of extraction efficiencies on a microplate reader UV–visible spectrophotometer to enable rapid screening of extraction efficiency as a function of solvent composition. Solvent extraction conditions were also developed to be compatible with subsequent forensic characterization of extracted dyes by capillary electrophoresis with UV–visible diode array detection. The capillary electrophoresis electrolyte successfully used in this work consists of 5 mM ammonium acetate in 40:60 acetonitrile–water at pH 9.3, with the addition of sodium dithionite reducing agent to facilitate analysis of vat dyes. The ultimate goal of these research efforts is enhanced discrimination of trace fiber evidence by analysis of extracted dyes. Figure Fitted absorbance response surface for extraction of a direct dye, C. I. yellow 58, using a ternary solvent system.  相似文献   

18.
DNA‐Forensik     
《Chemie in Unserer Zeit》2017,51(6):384-391
Forensics deals with the scientific methods to gather information at a crime scene for solving criminal actions. DNA forensics uses genetic material for these purposes. DNA fingerprinting is established as an important method for police detective work since the end of the 1980s. Currently, DNA forensics faces completely new possibilities through the application of more efficient high‐throughput sequencing methods, summarized as Next Generation Sequencing (NGS). Using NGS it could be possible to predict numerous externally visible characteristics including the complete facial shape of an unknown perpetrator. This article aims at presenting practices of forensic DNA analyses used to date and extending the picture for future possibilities and challenges.  相似文献   

19.
基于表面增强拉曼光谱(SERS)技术, 发展了一种纺织品中染料定性检测的快速方法. 以国家明确禁止使用的致癌染料碱性红9(Basic red 9)和分散黄23(Disperse yellow 23)为模型分子, 利用一步法快速制备的银纳米粒子为SERS基底并进行优化. 通过在纺织品表面直接滴加银纳米粒子的方法实现了纺织品中染料的快速SERS鉴别. 研究结果表明, 该方法不需要复杂的样品前处理过程, 能够直接实现纺织品中染料的快速定性, 且灵敏度高, 对纺织品上两种禁用染料碱性红9和分散黄23的检测限分别为0.16和0.24 mg/kg, 超出了国家标准的要求, 有望成为一种实用的纺织品安全性评估技术.  相似文献   

20.
Pigments are among the most important components of historical paintings and textiles and their nature provides the unique character of color. They can be divided into two main groups: inorganic and organic, extracted from plants or animals. Their identification is a necessary stage in the conservation of art objects. Reversed-phase liquid chromatography with electrospray ionization mass spectrometry (ESI-MS) and UV/visible spectrophotometric methods were elaborated for the identification of indigoid (indigo, indirubin, isoindigo, isoindirubin) color components of natural dyestuffs and their natural or synthetic precursors (indican, isatin, indoxyl, 2-indolinone). ES-MS offers detection limits in the range 0.03-5.00 microg ml(-1) for the color compounds examined. The method developed made it possible to identify indigo and its isomers in genuine Indian indigo, indigo from woad and Tyrian Purple. It was applied to the identification of natural dyes on fiber from a 19th century Japanese tapestry, 'Cranes in the landscape'. A procedure based on freezing and grinding of a sample before the extraction of dyes from the textile was developed. The components of the extract obtained were identified after acidic hydrolysis as indigotin and methylene blue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号