首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monte Carlo perturbation theory, in which terms in the thermodynamic perturbation series are evaluated by Monte Carlo averaging, has potentially large advantages in efficiency for calculating free energies of liquids from ab initio potential surfaces. In order to test the accuracy of perturbation theory for liquid metals, a series of calculations has been done on liquid copper, modeled by an embedded atom potential. A simple 1/r(12) pair potential is used as the reference system. The free energy is calculated to third order in perturbation theory, and the results are compared to an exact formula. It is found that for optimal reference potential parameters, second order perturbation theory is essentially exact. Second and third order theories give accurate results for significantly nonoptimal reference parameters. The relation between perturbation theory and reweighting is discussed, and an approximate formula is derived that shows an exponential dependence of the efficiency of reweighting on the second order free energy correction. Finally, techniques for application to ab initio potentials are discussed. It is shown that with samples of 100 configurations, it is possible to obtain accuracy and precision at the level of approximately 1 meV/atom.  相似文献   

2.
The second‐order multireference perturbation theory using an optimized partitioning, denoted as MROPT(2), is applied to calculations of various molecular properties—excitation energies, spectroscopic parameters, and potential energy curves—for five molecules: ethylene, butadiene, benzene, N2, and O2. The calculated results are compared with those obtained with second‐ and third‐order multireference perturbation theory using the traditional partitioning techniques. We also give results from computations using the multireference configuration interaction (MRCI) method. The presented results show very close resemblance between the new method and MRCI with renormalized Davidson correction. The accuracy of the new method is good and is comparable to that of second‐order multireference perturbation theory using Møller‐Plesset partitioning. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1390–1400, 2003  相似文献   

3.
A completely analytic perturbation theory has been developed to calculate the Helmholtz energy, compressibility factor, internal energy and constant-volume heat capacity for square-well chain fluid mixtures. This theory is based on the improved Barker–Henderson macroscopic compressibility (mc) approximation proposed by Zhang, the first-order perturbation theory of Wertheim in which Zhang’s analytic monomer radial distribution function as the function of temperature and monomer density is used, and a simple mixing rule similar to that of Hino–Prausnitz. The validity of the perturbation theory is evaluated by comparing the calculated compressibility factor, internal energy and constant-volume heat capacity for the freely jointed square-well chain mixtures from the theory to MC simulation data. The results show that the theory predicts results in good agreement with simulation results.  相似文献   

4.
A completely analytical equation of state for pure hard chain fluids, derived on the basis of perturbation theory and reported in our previous work, is applied for the calculation of pVT properties and the prediction of vapour–liquid equilibria of n-alkanes and n-perfluoroalkanes. The molecules are treated as a chain formed from freely joined spheres which interact via an extended site-site square-well potential. The molecular parameters of compounds are obtained from the experimental compressibility factor data above the critical temperature. These parameters are capable of relatively satisfactory prediction of the vapour–liquid equilibrium coexistence curves of compounds. Linear relationships have been found between the potential parameters of fluids and their molecular weight, which make it possible to predict the pVT data and vapour–liquid phase equilibria of heavier compounds.  相似文献   

5.
A completely analytic perturbation theory equation of state for the freely-jointed square-well chain fluid of variable well width (1 ≤ λ ≤ 2) is developed and tested against Monte Carlo simulation data. The equation of state is based on second-order Barker and Henderson perturbation theory to calculate the thermodynamic properties of the reference monomer fluid, and on first-order Wertheim thermodynamic perturbation theory to account for the connectivity of monomers to form chains. By using a recently developed real function expression for the radial distribution function of hard spheres in perturbation theory, we obtain analytic, closed form expressions for the Helmholtz free energy and the radial distribution function of square-well monomers of any well width. This information is used as the reference fluid in the perturbation theory of Wertheim to obtain an analytic equation of state, without adjustable parameters, that leads to good predictions of the compressibility factors and residual internal energies for 4-mer, 8-mer and 16-mer square-well fluids when compared with the simulation results. Further, very good results are obtained when this equation of state with temperature-independent parameters is used to correlate the vapor pressures and critical points of the linear alkanes from methane to n-decane.  相似文献   

6.
A thermodynamic model for the freely jointed square-well chain fluids was developed based on the thermodynamic perturbation theory of Barker-Henderson, Zhang and Wertheim. In this derivation Zhang's expressions for square-well monomers improved from Barker-Henderson compressibility approximation were adopted as the reference fluid, and Wertheim's polymerization method was used to obtain the free energy term due to the bond connectivity. An analytic expression for the Helmholtz free energy of the square-well chain fluids was obtained. The expression without adjustable parameters leads to the thermodynamic consistent predictions of the compressibility factors, residual internal energy and constant-volume heat capacity for dimer, 4-mer, 8-mer and 16-mer square-well fluids. The results are in good agreement with the Monte Carlo simulation. To obtain the MC data of residual internal energy and the constant-volume heat capacity needed, NVT MC simulations were performed for these square-well chain fluids.  相似文献   

7.
Triplet correlation functions for liquid NaK alloy, in the long-wavelength limit, have been calculated with the partial structure factors derived by taking the square-well potential as a perturbation over the hard-sphere potential. The present structure factors generate the experimental compressibilities from the Kirkwood—Buff general formula while the compressibilities derived from the conformal solution theory structure factors are higher than the experimental ones.  相似文献   

8.
本文在Zwanzlg微扰理论的基础上, 对二级以上的高级微扰项采用Barker与Henderson的近似方法, 得到一个简单的微扰理论表达式。以硬球势为参考势, 方阱势为微扰势,用一新的级数表达式g(R)=1/ηgj(η/(1-η))~j为径向分布函数, 导出了自由能。内能、比热、压缩因子的级数表达式。为了检验理论的正确性, 取g(R)级数的前四项代入各热力学性质的表达式, 与Monte-Carlo(MC)及分子动力学(MD)计算机模拟数据作了比较, 结果符合较好。  相似文献   

9.
We study the Kern-Frenkel model for patchy colloids using Barker-Henderson second-order thermodynamic perturbation theory. The model describes a fluid where hard sphere particles are decorated with one patch, so that they interact via a square-well potential if they are sufficiently close one another, and if patches on each particle are properly aligned. Both the gas-liquid and fluid-solid phase coexistences are computed and contrasted against corresponding Monte Carlo simulations results. We find that the perturbation theory describes rather accurately numerical simulations all the way from a fully covered square-well potential down to the Janus limit (half coverage). In the region where numerical data are not available (from Janus to hard-spheres), the method provides estimates of the location of the critical lines that could serve as a guideline for further efficient numerical work at these low coverages. A comparison with other techniques, such as integral equation theory, highlights the important aspect of this methodology in the present context.  相似文献   

10.
An analytical expression for the structure factor, S(k), obtained by treating the square-well potential as a perturbation on the hard-core in the mean spherical model approximation, has been used in computing the structure factor of liquid CH4.  相似文献   

11.
提出在Barker与Henderson的压缩性近似推导中,相邻壳层之间的分子数应该相关,导出了相关系数和改进的二级微扰项,提高了高级微扰项在较高密度区的准确性。对二级以上的高级微扰项采用Barker与Henderson的近似方法,得到一个简单的微扰理论表达式,以硬球势为参考势,方阱势为微扰势,用一新的级数形式的径向分布函数导出了自由能、内能、比热、压缩因子的级数表达式。其四项截断式的计算结果与MC、MD计算机模拟值符合较好。  相似文献   

12.
Using contact transformation perturbation method based on the Taylor expansion of the potential energy function in terms of dimensionless normal coordinates up to sixth‐order, the vibrational energy levels in terms of force constants are derived. The contact transformation theory has been applied to simplify the calculation of perturbation effects. To calculate the second‐order vibrational energy correction, the third and fourth‐order terms of potential function have been placed in the first‐order perturbation Hamiltonian and the second‐order Hamiltonian contains hexatic ones. We present expressions which give relations between the fourth‐ and sixth‐order terms in dimensionless normal coordinates of the potential and the anharmonicity coefficients. For illustration, a set of vibrational energies levels of SO2, and H2O molecules including anharmonic effects has been calculated. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Thermodynamic properties of quantum fluids are described using an extended version of the statistical associating fluid theory for potentials of variable range (SAFT-VR) that takes into account quantum corrections to the Helmholtz free energy A, based on the Wentzel-Kramers-Brillouin approximation. We present the theoretical background of this approach (SAFT-VRQ), considering two different cases depending on the continuous or discontinuous nature of the particles pair interaction. For the case of continuous potentials, we demonstrate that the standard Wigner-Kirkwood theory for quantum fluids can be derived from the de Broglie-Bohm formalism for quantum mechanics that can be incorporated within the Barker and Henderson perturbation theory for liquids in a straightforward way. When the particles interact via a discontinuous pair potential, the SAFT-VR method can be combined with the perturbation theory developed by Singh and Sinha [J. Chem. Phys. 67, 3645 (1977); and ibid. 68, 562 (1978)]. We present an analytical expression for the first-order quantum perturbation term for a square-well potential, and the theory is applied to model thermodynamic properties of hydrogen, deuterium, neon, and helium-4. Vapor-liquid equilibrium, liquid and vapor densities, isochoric and isobaric heat capacities, Joule-Thomson coefficients and inversion curves are predicted accurately with respect to experimental data. We find that quantum corrections are important for the global behavior of properties of these fluids and not only for the low-temperature regime. Predictions obtained for hydrogen compare very favorably with respect to cubic equations of state.  相似文献   

14.
The n-electron valence state perturbation theory (NEVPT) is a form of multireference perturbation theory which is based on a zero order reference wavefunction of CAS-CI type (complete active space configuration interaction) and which is characterized by the utilization of correction functions (zero order wavefunctions external to the CAS) of multireference nature, obtained through the diagonalization of a suitable two-electron model Hamiltonian (Dyall’s Hamiltonian) in some well defined determinant spaces. A review of the NEVPT approach is presented, starting from the original second order state-specific formulation, going through the quasidegenerate multi-state extension and arriving at the recent implementations of the third order in the energy and of the internally contracted configuration interaction. The chief properties of NEVPT—size consistence and absence of intruder states—are analyzed. Finally, an application concerning the calculation of the vertical spectrum of the biologically important free base porphin molecule, is presented.  相似文献   

15.
A new equation of state (EOS) for square-well chain molecules and their mixtures with variable well-width range (SWCF-VR-EOS) has been developed based on the sticky-point model for chemical association. Two important modifications have been made. Firstly, a new dispersion contribution to the Helmholtz function of monomers due to square-well potential with variable well-width range of 1.1 ≤ λ ≤ 3 was established by combining the second-order perturbation theory and Chiew's PY2 approximation of the integral equation. Secondly, the contribution of chain formation to the Helmholtz function is divided into two parts: One is from the hard sphere, and the other is from the effect of square-well potential described via the nearest-neighbor and next-to-nearest-neighbor residual cavity correlation functions (CCFs). The predicted compressibility factors and vapor–liquid coexistence curves for square-well fluids as well as for their mixtures are in good agreement with simulations. The new EOS has been applied to real non-associating fluids and the corresponding mixtures by adopting one-fluid mixing rule. The pVT and vapor–liquid equilibria (VLE) can be correlated satisfactorily. The model parameters for some homologous compounds are found to be linear with the molar mass indicating that the pVT and VLE of those homologous compounds can be predicted even if no accurate data are available.  相似文献   

16.
New Gibbs ensemble simulation data for a polar fluid modeled by a square-well potential plus dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions are presented. This simulation data is used in order to assess the applicability of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Ri?o, Physica A 202, 420 (1994)] to systems where more than one term in the multipole expansion is relevant. It is found that this theory is able to reproduce qualitatively well the vapor-liquid phase diagram for different multipolar moment strengths, corresponding to typical values of real molecules, except in the critical region. Hence, this theory is used to model the behavior of substances with multiple chemical bonds such as carbon monoxide and nitrous oxide and we found that with a suitable choice of the values of the intermolecular parameters, the vapor-liquid equilibrium of these species is adequately estimated.  相似文献   

17.
A constant denominator perturbation theory is developed based on a zeroth order Hamiltonian characterized by degenerate subsets of orbitals. Such a formulation allows for a decoupling of the numerators of the perturbation sequence, allowing for much more rapid evaluation of the resultant sums. For example, the full fourth order theory can be evaluated as an N 6 step rather than N 7, where N is proportional to the basis set.Although the theory is general, a constant denominator is chosen for this study as the difference between the average occupied and average virtual orbital energies scaled so that the first order wavefunction yields the lowest possible variational bound. The third order correction then appears naturally as a scaled Langhoff-Davidson correction. The full fourth order with this partitioning is developed. Results are presented within the localized bond model utilizing both the Pariser-Parr-Pople and CNDO/2 model Hamiltonians. The second order theory presents a useful bound, usually containing a good deal of the basis set correlation. In all cases examined the fourth order theory shows remarkable stability, even in those cases in which the Nesbet-Epstein partitioning seems poorly convergent, and the Moller-Plesset theory uncertain.  相似文献   

18.
The equilibrium conditions are analyzed for a spatially inhomogeneous ionic liquid using the density functional theory with allowance made for the second order gradient corrections. Solutions for the distribution of potential and charge density in the electric double layer at the ionic liquid/vapor interface are obtained using a parameterized total density profile normal to the surface. It is shown that taking into account the effects of the charge density gradient in the theory results in the appearance of damped oscillations of the charge density near the surface, while the double layer localized on the surface is reduced.  相似文献   

19.
It was proven that after averaging over the canonical Gibbs ensemble, the mean perturbation energy was singled out of the classical partition function before the expansion in a series of perturbation theory. Therefore, the term that formally coincides with first order perturbation theory in a decomposition of the Helmholtz free energy bears no relationship to perturbation theory. Then the proper series of the thermodynamic perturbation theory always starts with a second order infinitesimal. Therefore, the wellknown condition of applicability of the thermodynamic perturbation theory, “...the requirement that the perturbation energy per particle be small compared with T...” (L. D. Landau and E. M. Livshits, Statistical Physics, Vol. V, Pt. I), can be substantially weakened. The most important factor for applicability of thermodynamic perturbation theory is the value of many-particle correlations in an unperturbed system, but not the smallness of the perturbation potential.  相似文献   

20.
The Barker–Henderson macroscopic compressibility approximation of the second-order perturbation term is improved by assuming that the numbers of molecules in every two neighbour shells are correlated, based upon the original assumptions. The results are better than those for the original macroscopic compressibility and local compressibility approximation, especially at high densities. A simple analytic representation of square-well potential hard-sphere perturbation theory is derived based upon this improvement. The method is tested by calculating thermodynamic properties with the four-term truncated form, and the results are in good agreement with those of Monte Carlo and Molecular Dynamics simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号