首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly sensitive spectrophotometric method for palladium determination using piroxicam and tenoxicam as new chromogenic reagents has been developed. In the presence of sodium lauryl sulfate (SLS), palladium reacts with piroxicam (PX) or tenoxicam (TX) to form stable yellow orange complexes in an acetate buffer solution of pH 5.0 at 424 nm and 426 nm with molar absorptivity of 7.16 × 104 L mol−1 cm−1 and 1.20 × 105 L mol−1 cm−1, respectively. Sandell sensitivity, detection, and quantitation limits were also calculated. Optimum conditions were evaluated considering pH, reagent concentration, time, temperature, and surfactant concentration. The complex system conforms to Beer’s law over the range of 0.07–1.28 μg mL−1 palladium. The stoichiometric ratio and stability constant were also evaluated. Tolerance limits of many cations and anions were determined. Finally, the proposed method was applied successfully in the determination of palladium in jewellery, anode mud, synthetic mixtures, catalysts, and alloy samples.  相似文献   

2.
Highly sensitive and simple spectrophotometric determination of selenium is described for the determination of selenium(IV) using a new reagent leuco malachite green. The method is based on the reaction of selenium(IV) with potassium iodide in an acidic condition to liberate iodine, the liberated iodine oxidizes leuco malachite green to malachite green dye. The green coloration was developed in an acetate buffer (pH 4.2–4.9) on heating in a water bath (∼ 40 °C). The formed dye exhibits an absorption maximum at 615 nm. The method obeys Beer’s law over a concentration range of 0.04–0.4 μg mL−1 selenium. The molar absorptivity and Sandell’s sensitivity of the color system were found to be 1.67 × 105 L mol−1 cm-1 and 0.5 ng cm−2, respectively. The optimum reaction conditions and other analytical parameters have been evaluated. The proposed procedure has been successfully applied to the determination of selenium in real samples of water, soil, plant material, human hair, and cosmetic samples. The results were compared to those obtained with the reference method. Statistical analysis of the results confirms the precision and accuracy of the proposed method. In addition, the developed method is cost-effective and involves easily accessible instrumentation technique which can be used by ordinary research laboratories.  相似文献   

3.
A rapid, highly sensitive and selective fluorogenic method for the determination of traces of nitrite is described. It is based on the reaction of weakly fluorescent 1,3,5,7-tetramethyl-8-(3,4-diaminophenyl)-difluoroboradiaza-s-indacence (DAMBO) and nitrite in acidic aqueous solution to give 1,3,5,7-tetramethyl-8-(5-benzotriazolyl)-difluoroboradiaza-s-indacene (DAMBO-T), which is highly fluorescent. The optimum reaction conditions and other analytical parameters are investigated to enhance the sensitivity of the method. The fluorescence enhancement at 507 nm is linearly related to the concentration of nitrite in the range of 6.0 × 10−9–5.0 × 10−7 mol L−1 with a correlation coefficient of R = 0.9995 (n = 10) and a detection limit of 1.0 × 10−10 mol L−1. The R.S.D. is 1.12% (n = 10). The method is applied to the determination of nitrite in human saliva samples with the recoveries of 96. 24–105.30%. Correspondence: Ke-Jing Huang, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China  相似文献   

4.
 A new kinetic spectrophotometric method for the determination of hydrazine is described. The method is based on the inhibitory effect of hydrazine on the reaction of neutral red with nitrite in acidic media and 28 °C. A product from the reaction of neutral red with nitrite was used to monitor the reaction spectrophotometrically at 352 nm. Hydrazine can be determined in the range 4.7×10−6∼3.1×10−5mol/L with a detection limit of 3.1×10−6mol/L. The method was applied to the determination of hydrazine in water samples. Received July 23, 1999. Revision January 10, 2000.  相似文献   

5.
Xylenol orange (XO) is a suitable reagent for the spectrophotometric determination of niobium in a weakly acidic medium. The present study shows that the addition of 3-hydroxy-2-methyl-1-phenyl-4-pyridone (HX) influences the complex formation as well as the spectroscopic properties of this colored system. To prevent formation of niobium(V) hydrolyzed species in water, tartaric acid was used when preparing the niobium stock solution. The red-violet colored complex formed by heating niobium(V) with xylenol orange (XO) in the presence of HX at pH=3 has a maximum absorption wavelength at 565 nm. The complex can be extracted by a chloroform solution of tetraphenylphosphonium (TPP) chloride. The optimum reaction conditions and other parameters for complex formation have been evaluated. The mechanism of extraction is probably based on the formation of the associated ion pair between the tetraphenylphosphonium cation and the mixed Nb(V)-XO-HX anion. The extracted complex in chloroform showed a maximum absorbance at 585 nm with the corresponding molar absorption coefficient being 3.72×104 L⋅mol−1⋅cm−1, and obeys Beer’s law in the range 3×10−6 to 3×10−5 mol⋅L−1.  相似文献   

6.
Two simple, sensitive, and selective spectrophotometric methods for the determination of 5-(aminosulfonyl)-4-chloro-2-((2-furanylmethyl)amino)benzoic acid (furosemide, FUR) are described. The methods are based on acid hydrolysis of FUR to free primary aromatic amine and diazotization followed by coupling with N-1-napthylethylene diamine (NEDA) (method A) or 4,5-dihydroxynaphthalene-2,7-disulfonic acid (chromotropic acid, CTA) (method B). The colored reaction product can be measured spectrophotometrically at 520 nm (method A) or 500 nm (method B). Beer’s law is obeyed over the ranges of 1.75–21.0 μg mL−1 and 2.5–30.0 μg mL−1, for method A and method B, respectively. Apparent molar absorptivities and Sandell’s sensitivities (in L mol−1 cm−1 and μg cm−2 per 0.001 absorbance unit, respectively) were 1.34 × 104 and 0.0253 using NEDA as the coupling agent, and 8.5 × 103 and 0.0389 using CTA for the same purpose. Analysis of solutions containing seven different concentrations of FUR gave a correlation coefficient of 0.9979 using NEDA and 0.9984 using CTA, while the slope and the correlation coefficient of the regression equation were calculated. The reaction stoichiometry in both methods was evaluated by the limiting logarithmic method and was found to be 1: 1 (diazotized FUR: NEDA or diazotized FUR: CTA). The methods were successfully applied to the determination of FUR in spiked human urine and in pharmaceutical formulations. The recovery of FUR from spiked urine was satisfactory resulting in the values of (109.4 ± 4.37) % using NEDA and (113.0 ± 4.74) % using CTA. Results of the analysis of pharmaceuticals demonstrated that the proposed procedures are at least as accurate and precise as the official method while a statistical analysis indicated that there was no significant difference between the results obtained by the proposed methods and those of the official method.  相似文献   

7.
A simple, selective and sensitive kinetic method for the determination of nitrite in water was developed. The method is based on the catalytic effect of nitrite on the oxidation of methylene blue (MB) with bromate in a sulfuric acid medium. During the oxidation process, absorbance of the reaction mixture decreases with the increasing time, inversely proportional to the nitrite concentration. The reaction rate was monitored spectrophotometrically at λ = 666 nm within 30 s of mixing. Linear calibration graph was obtained in the range of 0.005–0.5 μg mL−1 with a relative standard deviation of 2.09 % for six measurements at 0.5 μg mL−1. The detection limit was found to be 0.0015 μg mL−1. The effect of different factors such as acidity, time, bromate concentration, MB concentration, ionic strength, and order of reactants additions is reported. Interference of the most common foreign ions was also investigated. The optimum experimental conditions were: 0.38 mol L−1 H2SO4, 5 × 10.4 mol L−1 KBrO3, 1.25 × 10.5 mol L−1 MB, 0.3 mol L−1 sodium nitrate, and 25°C. The proposed method was conveniently applied for the determination of nitrite in spiked drinking water samples.  相似文献   

8.
A multi-pumping flow system for the spectrophotometric determination of nitrite and nitrate is described. The determination of nitrite is based on the Griess-Ilosvay reaction. Nitrate can be determined after its on-line reduction to nitrite using hydrazine sulphate in alkaline medium. Calibration was linear up to 3 mg NO2 L−1 with a limit of detection (3sb/S) of 0.013 mg NO2 L−1 an injection throughput of 55 injections h−1 and a repeatability (RSD) of 0.5% for the direct determination of nitrite. Two calibration graphs within the ranges 0.039–7 mg NO3 L−1 and 0.026–5 mg NO2 L−1 were run for the determination of nitrate and nitrite under reducing conditions, respectively. A limit of detection of 0.039 mg NO3 L−1 was obtained. An injection throughput of 27 injections h−1 and an RSD lower than 1.5% were achieved. The method was successfully applied to the determination of nitrite and nitrate in water samples. Correspondence: Víctor Cerdà, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa Km7.5, 07122 Palma de Mallorca, Spain  相似文献   

9.
Simple and sensitive electrochemical method for the determination of nitrite, based on a nano-alumina-modified glassy carbon electrode (GCE), is described. Nitrite yields a well-defined oxidation peak whose potential is 0.74 V at the nano-alumina-coated GCE in 0.1 mol L−1 phosphate buffer (pH 5.0). Compared with bare GCE, the nano-alumina-modified GCE has evident catalytic effect towards the oxidation of nitrite, and its peak current can be significantly enhanced. Some of the experimental parameters were optimized for the determination of nitrite. The oxidation peak current was proportional to nitrite concentration in the range of 5.0 × 10−8–1.1 × 10−3 mol L−1, and a detection limit of 1.0 × 10−8 mol L−1 was obtained. This method has been successfully used to the determination of nitrite in sausage sample. Furthermore, results obtained by the method have been compared with spectrophotometric method.  相似文献   

10.
A carbon past electrode modified with [Mn(H2O)(N3)(NO3)(pyterpy)], ( \textpyterpy = 4¢- ( 4 - \textpyridyl ) - 2,2¢:\text6¢,\text2¢¢- \textterpyridine ) \left( {{\text{pyterpy}} = 4\prime - \left( {4 - {\text{pyridyl}}} \right) - 2,2\prime:{\text{6}}\prime,{\text{2}}\prime\prime - {\text{terpyridine}}} \right) complex have been applied to the electrocatalytic oxidation of nitrite which reduced the overpotential by about 120 mV with obviously increasing the current response. Relative standard deviations for nitrite determination was less than 2.0%, and nitrite can be determined in the ranges of 5.00 × 10−6 to 1.55 × 10−2 mol L−1, with a detection limit of 8 × 10−7 mol L−1. The treatment of the voltammetric data showed that it is a pure diffusion-controlled reaction, which involves one electron in the rate-determining step. The rate constant k′, transfer coefficient α for the catalytic reaction, and diffusion coefficient of nitrite in the solution, D, were found to be 1.4 × 10−2, 0.56× 10−6, and 7.99 × 10−6 cm2 s−1, respectively. The mechanism for the interaction of nitrite with the Mn(II) complex modified carbon past electrode is proposed. This work provides a simple and easy approach to detection of nitrite ion. The modified electrode indicated reproducible behavior, anti-fouling properties, and stability during electrochemical experiments, making it particularly suitable for the analytical purposes.  相似文献   

11.
A new ternary ion-association complex of tungsten(VI), 4-nitrocatechol (NC), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Thiazolyl Blue, MTT) was obtained and studied using an extraction-spectrophotometric method. The optimum pH, reagent concentrations, and extraction time were determined. The composition of the complex was found to be W(VI): NC: MTT = 1: 2: 2. The extraction process was investigated quantitatively and the key constants were calculated. The molar absorptivity of the chloroform extract at λmax = 415 nm was 2.8 × 104 dm3 mol−1 cm−1, and the Beer’s law was obeyed up to 8.8 μg cm−3 tungsten(IV). The limit of detection and limit of quantification were calculated to be 0.27 μg cm−3 and 0.92 μg cm−3, respectively. The effect of foreign ions and reagents was studied and a competitive method for determination of tungsten in products from ferrous metallurgy was developed. The residual standard deviation and the relative error were 0.53 % and 0.2 %, respectively.  相似文献   

12.
Transparent Nd: BiB3O6 crystal has been grown by top-seeded method. The refraction indices of the crystal were measured and the parameters of chromatic dispersion were fitted. The room temperature absorption spectra of the crystal have been measured and compared with that of 0.2 mol/L NdCl3 solution. According to Judd-Ofelt (JO) theory, the spectral strength parameters Ω2 = 0.1776×10−20 cm2, Ω4 = 0.1282−10−201 cm2 and Ω6 = 0.1357X10-20 cm2 of Nd3+ ion were fitted. The radiative transition probabilities AJ,J’, oscillator strengths fJ,J’, radiative lifetime rand the branching ratio βJ’ have all been calculated. Based on these parameters, the properties and application perspective are discussed.  相似文献   

13.
H. Cesur 《Chemical Papers》2007,61(5):342-347
A new solid-phase extraction method has been developed for the selective extraction of Cu(II) in an aqueous system using freshly precipitated lead diethyldithiocarbamate (Pb(DDTC)2) as a reagent. The method is based on the quantitative replacement of Pb(II) ions in the solid Pb(DDTC)2 phase by Cu(II) ions present in aqueous phase. The obtained solid Cu(DDTC)2 phase was dissolved in chloroform and determined spectrophotometrically at 435 nm. Beer’s law was obeyed over the concentration range of 0.2–5 mg dm−3. The molar absorptivity and the Sandell’s sensitivity coefficients of the solutions were 1.0689 × 104 dm3 mol−1 cm−1 and 0.0060 μg cm−2, respectively. The optimum conditions for each parameter were experimentally determined and possible interferences of various salts were also studied. The method has been validated and applied to determine Cu(II) in various alloys and water samples.  相似文献   

14.
In pH 2.50 HCl-NaAc buffer solution, the reaction between telmisartan and congo red could form ionassociation complex, which has the maximum absorbance at 593 nm in the spectrophotometric experiment. Under this wavelength, the Beer’s law was obeyed within the concentration range of 1.08 × 10−6−2.24 × 10−5 M. The linear regression equation was A = −0.1913 × 105 c + 0.0286 (C: M). The regression coefficient r was 0.9986. The apparent molar coefficient ɛ593 was 1.63 × 104 L mol−1 cm−1 and the detection limit was 5.66 × 10−7 M. The established method having high sensitivity and good selectivity could be applied to the determination of telmisartan in pharmaceutical, urine and blood plasma samples with satisfactory results. The reaction mechanism was also discussed by using density functional theory methods. The result obtained was consilient with experimental data. The article is published in the original.)  相似文献   

15.
 Zirconium (IV) was determined spectrophotometrically by reaction with quercetin as primary ligand and oxalate as secondary ligand. Polyvinylpyrrolidone (PVP) was used as protective colloid to solubilize the formed zirconium quercetin oxalate ternary complex. The molar absorptivity of the 1:3:1 (zirconium–quercetin–oxalate) complex is 7.31 × 104 L·mol−1 cm−1 at 430 nm with a stability constant of 8.2 × 1020 and its detection limit is 0.16 mg/L. Beer’s law is rectilinear up to 1.46 mg/L of zirconium (IV). The sensitivity index is 1.25 ng cm−2. The reaction of aluminium (III) with quercetin in presence of PVP as a surfactant has been studied spectrophotometrically. The molar absorptivity of the 1:3 (aluminium–quercetin) complex is 8.09 × 104 × L·mol−1·cm−1 at 433 nm, its stability constant is 2.6 × 1013 with sensitivity index of 0.33 ng·cm−2 and its detection limit is 0.08 mg/L. The optimal conditions for the quantitative determination of zirconium and aluminium were studied. The proposed methods are examined by statistical analysis of the experimental data. The methods are free from interference of most cations and anions. The proposed methods have been used to determine zirconium and aluminium in industrial waste water. Received May 30, 2001; accepted November 2, 2001; published online July 15, 2002  相似文献   

16.
Solvent extraction of molybdenum(VI) ion associate with triphenyltetrazolium chloride (TTC) has been studied. TTC was proposed as reagent for the spectrophotometric determination of micro amounts of molybdenum(VI) at λmax 250 nm. The optimum conditions for extraction of molybdenum(VI) as an ionassociation complex with TTC has been determined. Beer’s law is obeyed in the range of 0.5–10 μg/mL molybdenum(VI). The molar absorptivity of the ion-pair is 1 × 106 L/mol cm. The sensitivity of the method is 9.6 × 10−5 μg/cm2. The characteristic values for the extraction equilibrium and the equilibrium in the aqueous phase are: distribution constant K D = 32.64, extraction constant K ex = 2.19 × 1010 association constant β = 6.71 × 108. The interferences of different cations, anions on molybdenum(VI) determination were also investigated. A sensitive and selective method for the determination of microquantities of molybdenum(VI) has been developed. The determination was carried out without preliminary separation of molybdenum. A novel procedure of molybdenum(VI) extraction and spectrophotometric determination in different plant samples was examined.  相似文献   

17.
A simple, rapid, and economical spectrophotometric method is developed for the determination of sulfur dioxide in sugar and air samples. The developed method is based on a red-brown peroxovanadate complex (λmax = 470 nm) produced in 2 M sulfuric acid when ammonium metavanadate is treated with hydrogen peroxide. Under fixed concentrations of hydrogen peroxide and ammonium metavanadate, when sodium metabisulfite (Na2S2O5 = 2SO2) is added, it preferentially reacts with hydrogen peroxide producing sulfuric acid, and the unreacted hydrogen peroxide then reacts with ammonium metavanadate; therefore, the concentration of sulfur dioxide is directly proportional to a decrease in the concentration of the peroxovanadate complex. The stoichiometric ratio between hydrogen peroxide and ammonium metavanadate as well as the stability constant of the complex are determined by the modified Job’s method and the respective values are found to be 1: 1 and 2.5 × 104 mol−1 L, respectively. The system obeys Lambert-Beer’s law in the concentration range 3.57–64.26 ppm of sulfur dioxide. The molar absorptivity, correlation coefficient, and Sandell’s sensitivity values are found to be 0.649 × 103 L mol−1 cm−1, 0.9908, and 0.1972 μg cm−2, respectively. The method is applied to the determination of sulfur dioxide present in commercial sugars and air samples. The results obtained are reproducible with a standard deviation of 0.02–0.05. For method validation, sulfur dioxide is also determined separately following the AOAC method for an air sample and the ICUMSA method for commercial sugars. The results obtained by the developed and official methods are in good agreement. The text was submitted by the authors in English.  相似文献   

18.
 A simple and direct spectrophotometric method has been developed for the determination of cobalt(II) using N,N′-Bis(2-aminobenzoyl)ethylenediamine (Baben). The method is based on the colour reaction between Baben and cobalt(II) in borax buffer (pH 9.2). The studies are carried out at 470 nm at which the calculated value of molar absorptivity is found to be 1.102 × 104 L mol−1 cm−1. The system obeys Beer’s law over a wide range of concentration (2–20 μg/ml). The effect of interfering ions has been studied and the method was applied to the determination of cobalt in water, industrial effluents and in alloys and the results were highly satisfactory. Received May 8, 2000. Revision January 30, 2001.  相似文献   

19.
Conclusion Dans une première partie, l’étude des réactions engendrées par les neutrons rapides de pile sur douze éléments a montré que certaines de celles-ci pouvaient être utilisées pour un dosage quantitatif. Dans une seconde partie, nous proposons un dosage radiochimique du silicium par la réaction28Si(n, p)28Al qui a, dans nos conditions de travail, sa limite de détermination à 620 μg. A titre de comparaison, signalons que cette limite se situe par irradiation avec des neutrons de 14 MeV, produits au moyen d’un accélérateur (flux de 5·108 n·cm−2·sec−1), à environ 10 μg. Le dosage non destructif du silicium dans le diméthylpolysilane est décrit.
In the first part, the fast-neutron flux available in reactor cores was utilized to define experimentally the sensitivity for the determination of 12 different elements, based on fast-neutron nuclear reactions. The fluxes available with our AGN-201 P reactor are in the range of 109–1010 n·cm−2·sec−1 in the 1–4 MeV region. A good sensitivity was obtained for27Al,52Cr,56Fe,28Si,23Na [by (n, p) reaction],27Al,31P,89Y [by (n, α) reaction] and197Au,183W,89Y [by (n, n′) reaction]; the elements Cl, Ca, Pb failed to give reactions. In the second part, a non-destructive method for the determination of silicium based on the reaction28Si(n, p)28Al is proposed. The limit of determination is about 0.6 mg for a neutron flux of 109 n·cm−2·sec−1. As an example, Si in dimethylpolysilane was determined.
  相似文献   

20.
 In this work it was established that, in the presence of ammonium carbonate, traces of manganese(II) catalyse the oxidation of Nile Blue A by hydrogen peroxide, which enables its kinetic determination in the concentration range from 6.6 to 65.9 ng cm−3, the detection limit being 8.0 × 10−2 ng cm−3. Antiviral/antitumour substances modify the catalytic activity of manganese(II): 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide, ribavirin, increases the catalytic effect of manganese(II), while 2-β-D-ribofuranosyl-thiazole-4-carboxamide, tiazofurin, acts as an inhibitor. On the basis of these effects, a kinetic method for determining ribavirin concentrations from 0.5 × 10−1 to 4.0 × 10−1 μg cm−3 and tiazofurin concentrations from 0.3 to 2.6 μg cm−3 is proposed. The kinetics of the indicator reaction were studied in the presence of the substances examined, the kinetic equations established, and the constants of the corresponding reaction rates calculated. The effect of temperature on these reactions was also investigated. The method was applied to the determination of manganese(II) in mineral water and ribavirin in pharmaceutical preparations. Received December 16, 1999. Revision June 6, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号