首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
界面可控硫醇SAMs纳米金修饰金电极的电化学行为研究   总被引:1,自引:0,他引:1  
在裸金电极上自组装不同比例的4,4’-二甲基联苯硫醇(MTP)和硫辛酸(TA)混合液,形成自组装膜(MTP+TA/Au SAMs),再修饰纳米金,制得纳米金混合巯基修饰金电极(AuNPs/MTP+TA/Au)。研究了纳米金混合巯基修饰金电极的电化学行为和阻抗行为,结果表明电极表面pH值的改变对电极表面的电子转移有重要影响。对葡萄糖传感器的制备条件、测定条件、抗干扰能力等进行了讨论,结果表明修饰电极的微结构和微环境有必要进一步研究。  相似文献   

2.
The interfacing of functional proteins with solid supports and the study of related protein‐adsorption behavior are promising and important for potential device applications. In this study, we describe the preparation of bacteriorhodopsin (bR) monolayers on Br‐terminated solid supports through covalent attachment. The bonding, by chemical reaction of the exposed free amine groups of bR with the pendant Br group of the chemically modified solid surface, was confirmed both by negative AFM results obtained when acetylated bR (instead of native bR) was used as a control and by weak bands observed at around 1610 cm?1 in the FTIR spectrum. The coverage of the resultant bR monolayer was significantly increased by changing the pH of the purple‐membrane suspension from 9.2 to 6.8. Although bR, which is an exceptionally stable protein, showed a pronounced loss of its photoactivity in these bR monolayers, it retained full photoactivity after covalent binding to Br‐terminated alkyls in solution. Several characterization methods, including atomic force microscopy (AFM), contact potential difference (CPD) measurements, and UV/Vis and Fourier transform infrared (FTIR) spectroscopy, verified that these bR monolayers behaved significantly different from native bR. Current–voltage (IV) measurements (and optical absorption spectroscopy) suggest that the retinal chromophore is probably still present in the protein, whereas the UV/Vis spectrum suggests that it lacks the characteristic covalent protonated Schiff base linkage. This finding sheds light on the unique interactions of biomolecules with solid surfaces and may be significant for the design of protein‐containing device structures.  相似文献   

3.
A self‐assembled monolayer (SAM) of 1‐(3,5‐epidithio‐2,3,5‐trideoxy‐β‐d ‐threo‐pentofuranosyl)thymine (EFT) on a gold electrode was prepared and characterized by Raman spectral and electrochemical measurements. Voltammetric and electrochemical impedance measurements show that the SAM of EFT on a Au electrode impedes the electron‐transfer reaction. The SAM of EFT was successfully used for the voltammetric sensing of urate in neutral solution. The coexisting ascorbate anion does not interfere and therefore the EFT‐based electrode was able to quantify urate at the micromolar level in the presence of a large excess amount of ascorbate. To demonstrate the practical applications, the amount of urate in two different human serum samples was quantified by using the EFT‐based electrode; the results are in good agreement with those determined by the clinical method. DFT calculations show that both ascorbate and urate have noncovalent interactions including hydrogen‐bonding interactions with EFT.  相似文献   

4.
按文[1]模型, 模拟计算汞/水溶液界面五个不同温度的内层微分电容随表面电荷变化曲线. 结果表明, 文[1]处理方法对此类体系仍可成立. 指出在溶液的冰点附近, 吸附层上的水分子有可能以氢键缔合的方式连结并构成局部有序排列. 温度升高, 即趋无规分布状态。  相似文献   

5.
A synthesis and a study by method of measuring the differential capacitance on a stationary mercury drop of the adsorption of a number of cubane derivatives in a surface-inactive electrolyte are performed. It is established that the compounds studied exhibit a high surface activity. For bromine derivatives of cubane (4-bromomethoxycarbonylcubane, 4-bromohydroxymethylcubane) the formation of two-dimensional adsorption layers is discovered. Values of adsorption parameters for these compounds are evaluated with use made of the Frumkin isotherm.  相似文献   

6.
本文提出电极/溶液界面溶剂化层偶极取向分布模型, 应用统计力学方法及热力学平衡条件导出普遍化的单层吸附等温方程, 其电解质溶液的溶剂组成可以是纯态的或混合物(多组份)的. 文中分别以甲酰胺、碳酸亚乙酯和甲醇等三种纯溶剂的汞/溶液界面为例, 采用曲线拟合计算内层微分电容随表面电荷变化关系。预计本模型处理对汞/水溶液或汞/(混合溶剂)溶液界面仍可适用。  相似文献   

7.
8.
ElectrochemicaldepositionoffunctionalceramiccoatingshasrecentlyattTactedconsiderableattention'-3becauseofavarietyofadvantagesofthemethodofthecoatingfabrication,suchasalowprocesstemPeratUre,theabilitytodepositonporousorcomplexshaPesofsubstrae,thesimPlecontrolofdepositthickness.Themechanismofelectrodepositionforfunctionalceramicsontothesubstr8tehasnotbeenfiJllyclarifiedatpresent.ltwasgenerallygUessed"'thattheelectrochemicalreactionsontheelectrodesurfacemaycauseapHchangeatthecathode/solutionint…  相似文献   

9.
The effect of H2O in electrolytes and in electrode lattices on the thermodynamics and kinetics of reversible multivalent‐ion intercalation chemistry based on a model platform of layered VOPO4 has been investigated. The presence of H2O at the electrolyte/electrode interface plays a key role in assisting Zn2+ diffusion from electrolyte to the surface, while H2O in the lattice structure alters the working potential. More importantly, a dynamic equilibrium between bulk electrode and electrolyte is eventually reached for H2O transport during the charge/discharge cycles, with the water activity serving as the key parameter determining the direction of water movement and the cycling stability.  相似文献   

10.
Recent theoretical and experimental results pertinent to protein adsorption kinetics obtained for well-defined systems using direct experimental techniques are discussed. Attention is focused on albumins and fibrinogen, whose structure and physicochemical characteristic are well-known. It is confirmed that the experimental data obtained by AFM imaging, QCM, OWLS, XPS and electrokinetic techniques (streaming potential) are prone to a quantitative interpretation in terms of the coarse-grained and molecular dynamics modeling. This allows to derive reliable data concerning the mass transfer rates, hydration functions, maximum coverages and adsorption/desorption kinetic constants. These results confirm that the protein adsorption mechanism is governed by electrostatic interactions among heterogeneously distributed charges. The protein substrate interactions promote the molecule transfer through the surface layer, control the free energy and in consequence the residence time of the molecule on substrate surfaces. On the other hand, the interactions among adsorbed molecules control the maximum coverage and the formation of bilayer structures. As a result of this complex electrostatics, one often observes in protein adsorption studies the formation of irreversibly bound fraction of molecules that contact the substrate and a reversibly adsorbed fraction otherwise. This leads to the appearance of anomalous isotherms, characterized by considerable adsorption for negligible bulk protein concentration, which deviate from the Langmuir model.  相似文献   

11.
Gradual and reversible tuning of the torsion angle of an amphiphilic chiral binaphthyl, from ?90° to ?80°, was achieved by application of a mechanical force to its molecular monolayer at the air–water interface. This 2D interface was an ideal location for mechanochemistry for molecular tuning and its experimental and theoretical analysis, since this lowered dimension enables high orientation of molecules and large variation in the area. A small mechanical energy (<1 kcal mol?1) was applied to the monolayer, causing a large variation (>50 %) in the area of the monolayer and modification of binaphthyl conformation. Single‐molecule simulations revealed that mechanical energy was converted proportionally to torsional energy. Molecular dynamics simulations of the monolayer indicated that the global average torsion angle of a monolayer was gradually shifted.  相似文献   

12.
以Cl-为例,应用格子气模型,建立了阴离子吸附层对Au(111)表面应力贡献的统计热力学理论,计算了吸附层Cl-离子间相互作用能、表面应力贡献和二维体积弹性模量.计算结果表明, Cl-吸附层对表面应力贡献的大小,与实验值相近;在Cl-低覆盖度时,经验包括ClO4-贡献,计算了表面应力变化-电荷密度曲线,近似呈线性关系;对于Cl-/Au(111)体系,表面应力与表面张力之差与表面应力同量级,两者差别不可忽略.较好地解释了有关的实验事实.  相似文献   

13.
14.
A two‐dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir–Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine‐linked chemical structure of the obtained monolayer was characterized by tip‐enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure–property relationships.  相似文献   

15.
Beam me up, Scotty! Laser irradiation of Langmuir monolayers of gold nanoparticles (NPs) and elaidic acid led to dramatic reorganization that was dependent on the laser power (see picture, scale bar=100 μm). Variable‐temperature experiments indicate that localized surface heating in an extremely small temperature range, induced by the laser beam, causes ordering of the NPs.

  相似文献   


16.
Russian Journal of General Chemistry - The results of investigation of the electrochemical properties of cryptand 222 from the macropolycyclic ligands group and its complexes with cations were...  相似文献   

17.
18.
Room‐temperature ionic liquids are of great current interest for electrochemical applications in material and energy science. Essential for understanding the electrochemical reactivity of these systems are detailed data on the structure and dynamics of the interfaces between these compounds and metal electrodes, which distinctly differ from those in traditional electrolytes. In situ studies are presented of Au(111) electrodes in 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP][TFSA]) by high‐speed scanning tunneling microscopy (video‐STM). [BMP][TFSA] is one of the best‐understood air and water stable ionic liquids. The measurements provide direct insights into the potential‐dependent molecular arrangement and surface dynamics of adsorbed [BMP]+ cations in the innermost layer on the negatively charged Au electrode surface. In particular, two distinct subsequent transitions in the adlayer structure and lateral mobility are observed with decreasing potential.  相似文献   

19.
Phosphonic acid (--PO(3)H(2)) terminated self-assembled monolayers (SAMs) on a gold surface were used as a functional interface to immobilize hemoglobin (Hb). In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) measurements show that Hb immobilization is a sluggish process due to formation of multilayer Hb structures on the PO(3)H(2)-terminated SAMs, as revealed by ellipsometry, atomic force microscopy (AFM), and cyclic voltammetry (CV). In the multilayered Hb film, the innermost Hb molecules can directly exchange electrons with the electrode, whereas Hb beyond this layer communicates electronically with the electrode via protein-protein electron exchange. In addition, electrochemical measurements indicate that immobilization of Hb on the PO(3)H(2)-terminated SAMs is not driven by the electrostatic interaction, but likely by hydrogen-bonding interaction. The immobilized Hb molecules show excellent bioelectrocatalytic activity towards hydrogen peroxide, that is, the PO(3)H(2)-terminated SAMs are promising for construction of third-generation biosensors.  相似文献   

20.
In this paper, we report an advanced long‐life lithium ion battery, employing a Pyr14TFSI‐LiTFSI non‐flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn‐C) nanocomposite anode, and a layered LiNi1/3Co1/3Mn1/3O2 (NMC) cathode. The IL‐based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel–Tammann–Fulcher (VTF) trend. Lithium half‐cells employing the Sn‐C anode and NMC cathode in the Pyr14TFSI‐LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn‐C electrodes are combined into a cathode‐limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g?1 and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL‐based lithium ion cells are suitable batteries for application in electric vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号