首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this paper, an adaptive refinement strategy based on a node‐moving technique is proposed and used for the efficient solution of the steady‐state incompressible Navier–Stokes equations. The value of a least squares functional of the residual of the governing differential equation and its boundary conditions at nodal points is regarded as a measure of error and used to predict the areas of poor solutions. A node‐moving technique is then used to move the nodal points to the zones of higher numerical errors. The problem is then resolved on the refined distribution of nodes for higher accuracy. A spring analogy is used for the node‐moving methodology in which nodal points are connected to their neighbors by virtual springs. The stiffness of each spring is assumed to be proportional to the errors of its two end points and its initial length. The new positions of the nodal points are found such that the spring system attains its equilibrium state. Some numerical examples are used to illustrate the ability of the proposed scheme for the adaptive solution of the steady‐state incompressible Navier–Stokes equations. The results demonstrate a considerable improvement of the results with a reasonable computational effort by using the proposed adaptive strategy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we consider an adaptive meshing scheme for solution of the steady incompressible Navier–Stokes equations by finite element discretization. The mesh refinement and optimization are performed based on an algorithm that combines the so‐called conforming centroidal Voronoi Delaunay triangulations (CfCVDTs) and residual‐type local a posteriori error estimators. Numerical experiments in the two‐dimensional space for various examples are presented with quadratic finite elements used for the velocity field and linear finite elements for the pressure. The results show that our meshing scheme can equally distribute the errors over all elements in some optimal way and keep the triangles very well shaped as well at all levels of refinement. In addition, the convergence rates achieved are close to the best obtainable. Extension of this approach to three‐dimensional cases is also discussed and the main challenge is the efficient implementation of three‐dimensional CfCVDT generation that is still under development. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
We consider the application of a four‐dimensional variational data assimilation method to a numerical model, which employs local mesh refinement to improve its solution. We focus on structured meshes where a high‐resolution grid is embedded in a coarser resolution one, which covers the entire domain. The formulation of the nested variational data assimilation algorithm was derived in a preliminary work (Int. J. Numer. Meth. Fluids 2008; under review). We are interested here in complementary theoretical aspects. We present first a model for the multi‐grid background error covariance matrix. Then, we propose a variant of our algorithms based on the addition of control variables in the inter‐grid transfers in order to allow for a reduction of the errors linked to the interactions between the grids. These formulations are illustrated and discussed in the test case experiment of a 2D shallow water model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The idea of hp‐adaptation, which has originally been developed for compact schemes (such as finite element methods), suggests an adaptation scheme using a mixture of mesh refinement and order enrichment based on the smoothness of the solution to obtain an accurate solution efficiently. In this paper, we develop an hp‐adaptation framework for unstructured finite volume methods using residual‐based and adjoint‐based error indicators. For the residual‐based error indicator, we use a higher‐order discrete operator to estimate the truncation error, whereas this estimate is weighted by the solution of the discrete adjoint problem for an output of interest to form the adaptation indicator for adjoint‐based adaptations. We perform our adaptation by local subdivision of cells with nonconforming interfaces allowed and local reconstruction of higher‐order polynomials for solution approximations. We present our results for two‐dimensional compressible flow problems including subsonic inviscid, transonic inviscid, and subsonic laminar flow around the NACA 0012 airfoil and also turbulent flow over a flat plate. Our numerical results suggest the efficiency and accuracy advantages of adjoint‐based hp‐adaptations over uniform refinement and also over residual‐based adaptation for flows with and without singularities.  相似文献   

5.
The foundations of a new discontinuous Galerkin method for simulating compressible viscous flows with shocks on standard unstructured grids are presented in this paper. The new method is based on a discontinuous Galerkin formulation both for the advective and the diffusive contributions. High‐order accuracy is achieved by using a recently developed hierarchical spectral basis. This basis is formed by combining Jacobi polynomials of high‐order weights written in a new co‐ordinate system. It retains a tensor‐product property, and provides accurate numerical quadrature. The formulation is conservative, and monotonicity is enforced by appropriately lowering the basis order and performing h‐refinement around discontinuities. Convergence results are shown for analytical two‐ and three‐dimensional solutions of diffusion and Navier–Stokes equations that demonstrate exponential convergence of the new method, even for highly distorted elements. Flow simulations for subsonic, transonic and supersonic flows are also presented that demonstrate discretization flexibility using hp‐type refinement. Unlike other high‐order methods, the new method uses standard finite volume grids consisting of arbitrary triangulizations and tetrahedrizations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
This paper discusses the estimation of discretization errors on the basis of power series expansions for grid sets that are not geometrically similar, that is, grids not exhibiting a constant grid refinement ratio for the entire computational domain. Simple test cases with structured and unstructured grids are used to demonstrate that reliable error estimates on the basis of power series expansions can be made if the grids are refined systematically. However, if the grid refinement ratio is not constant in the complete domain, the definition of the typical cell size is not obvious, and the observed order of accuracy may not be equal to the expected theoretical order of the discretization. Some alternatives for the definition of the typical cell size are tested. In these tests, the error estimation does not show a significant effect of the definition of the typical cell size even for some cases with data sets clearly outside the ‘asymptotic range’. For non‐geometrically similar grids, the best estimates of the observed order of accuracy are obtained with the typical cell size on the basis of the mode of the cell size (the cell size that occurs more often in a given grid). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The pseudo‐time formulation of Jameson has facilitated the use of numerical methods for unsteady flows, these methods have proved successful for steady flows. The formulation uses iterations through pseudo‐time to arrive at the next real time approximation. This iteration can be used in a straightforward manner to remove sequencing errors introduced when solving mean flow equations together with another set of differential equations (e.g. two‐equation turbulence models or structural equations). The current paper discusses the accuracy and efficiency advantages of removing the sequencing error and the effect that building extra equations into the pseudo‐time iteration has on its convergence characteristics. Test cases used are for the turbulent flow around pitching and ramping aerofoils. The performance of an implicit method for solving the pseudo‐steady state problem is also assessed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
A unified algorithm is presented for the refinement of finite element meshes consisting of tensor product Lagrange elements in any number of space dimensions. The method leads to repeatedly refined n-irregular grids with associated constraint equations. Through an object-oriented implementation existing solvers can be extended to handle mesh refinements without modifying the implementation of the finite element equations. Various versions of the refinement procedure are investigated in a porous media flow problem involving singularities around wells. A domain decomposition-type finite element method is also proposed based on the refinement technique. This method is applied to flow in heterogeneous porous media. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
An estimate on the conservation error due to the non-conservative data interpolation scheme for overset grids is given in this paper. It is shown that the conservation error is a first-order term if second-order conservative schemes are employed for the Chimera grids and if discontinuities are located away from overlapped grid interfaces. Therefore in the limit of global grid refinement, valid numerical solutions should be obtained with a data interpolation scheme. In one demonstration case the conservation error in the original Chimera scheme was shown to affect flow even without discontinuities on coarse to medium grids. The conservative Chimera scheme was shown to give significantly better solutions than the original Chimera scheme on these grids with other factors being the same.  相似文献   

10.
11.
A new adaptive quadtree method for simulating laminar viscous fluid problems with free surfaces and interfaces is presented in this paper. The Navier–Stokes equations are solved with a SIMPLE‐type scheme coupled with the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) (Numerical prediction of two fluid systems with sharp interfaces, Ph.D. Thesis, Imperial College of Science, Technology and Medicine, London, 1997) volume of fluid (VoF) method and PLIC reconstruction of the volume fraction field during refinement and derefinement processes. The method is demonstrated for interface advection cases in translating and shearing flow fields and found to provide high interface resolution at low computational cost. The new method is also applied to simulation of the collapse of a water column and the results are in excellent agreement with other published data. The quadtree grids adapt to follow the movement of the free surface, whilst maintaining a band of the smallest cells surrounding the surface. The calculation is made on uniform and adapting quadtree grids and the accuracy of the quadtree calculation is shown to be the same as that made on the equivalent uniform grid. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The convergence properties of an iterative solution technique for the Reduced Navier–Stokes equations are examined for two-dimensional steady subsonic flow over bump and trough geometries. Techniques for decreasing the sensitivity to the initial pressure approximation, for fine meshes in particular, are investigated. They are shown to improve the robustness of the relaxation process and to decrease the computational work required to obtain a converged solution. A semi-coarsening multigrid technique that has previously been found to be particularly advantageous for high-Reynolds-number (Re) flows with flow separation and with highly stretched surface-normal grids is applied herein to further accelerate convergence. Solutions are obtained for the laminar flow over a trough that is more severe than has been considered to date. Sufficient axial grid refinement in this case leads to a shock-like reattachment and, for sufficiently large Re, to a local ‘divergence’ of the numerical computations. This ‘laminar flow breakdown’ appears to be related to an instability associated with high-frequency fine-grid modes that are not resolvable with the present modelling. This behaviour may be indicative of dynamic stall or of incipient transition. The breakdown or instability is shown to be controllable by suitable introduction of transition turbulence models or by laminar flow control, i.e. small amounts of wall suction. This lends further support to the hypothesis that the instability is of a physical rather than numerical character and suggests that full three-dimensional analysis is required to properly capture the flow behaviour. Another inference drawn from this investigation is that there is a need for careful grid refinement studies in high-Re flow computations, since coarser grids may yield oscillation-free solutions that cannot be obtained on finer grids.  相似文献   

13.
An algorithm, based on the overlapping control volume (OCV) method, for the solution of the steady and unsteady two‐dimensional incompressible Navier–Stokes equations in complex geometry is presented. The primitive variable formulation is solved on a non‐staggered grid arrangement. The problem of pressure–velocity decoupling is circumvented by using momentum interpolation. The accuracy and effectiveness of the method is established by solving five steady state and one unsteady test problems. The numerical solutions obtained using the technique are in good agreement with the analytical and benchmark solutions available in the literature. On uniform grids, the method gives second‐order accuracy for both diffusion‐ and convection‐dominated flows. There is little loss of accuracy on grids that are moderately non‐orthogonal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
The numerical simulation of physical phenomena represented by non‐linear hyperbolic systems of conservation laws presents specific difficulties mainly due to the presence of discontinuities in the solution. State of the art methods for the solution of such equations involve high resolution shock capturing schemes, which are able to produce sharp profiles at the discontinuities and high accuracy in smooth regions, together with some kind of grid adaption, which reduces the computational cost by using finer grids near the discontinuities and coarser grids in smooth regions. The combination of both techniques presents intrinsic numerical and programming difficulties. In this work we present a method obtained by the combination of a high‐order shock capturing scheme, built from Shu–Osher's conservative formulation (J. Comput. Phys. 1988; 77 :439–471; 1989; 83 :32–78), a fifth‐order weighted essentially non‐oscillatory (WENO) interpolatory technique (J. Comput. Phys. 1996; 126 :202–228) and Donat–Marquina's flux‐splitting method (J. Comput. Phys. 1996; 125 :42–58), with the adaptive mesh refinement (AMR) technique of Berger and collaborators (Adaptive mesh refinement for hyperbolic partial differential equations. Ph.D. Thesis, Computer Science Department, Stanford University, 1982; J. Comput. Phys. 1989; 82 :64–84; 1984; 53 :484–512). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
In this article, we develop a new airfoil shape optimization algorithm based on higher‐order adaptive DG methods with control of the discretization error. Each flow solution in the optimization loop is computed on a sequence of goal‐oriented h‐refined or hp‐refined meshes until the error estimation of the discretization error in a flow‐related target quantity (including the drag and lift coefficients) is below a prescribed tolerance. Discrete adjoint solutions are computed and employed for the multi‐target error estimation and adaptive mesh refinement. Furthermore, discrete adjoint solutions are employed for evaluating the gradients of the objective function used in the CGs optimization algorithm. Furthermore, an extension of the adjoint‐based gradient evaluation to the case of target lift flow computations is employed. The proposed algorithm is demonstrated on an inviscid transonic flow around the RAE2822, where the shape is optimized to minimize the drag at a given constant lift and airfoil thickness. The effect of the accuracy of the underlying flow solutions on the quality of the optimized airfoil shapes is investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Meshless methods are new approaches for solving partial differential equations. The main characteristic of all these methods is that they do not require the traditional mesh to construct a numerical formulation. They require node generation instead of mesh generation. In other words, there is no pre‐specified connectivity or relationships among the nodes. This characteristic make these methods powerful. For example, an adaptive process which requires high computational effort in mesh‐dependent methods can be very economically solved with meshless methods. In this paper, a posteriori error estimate and adaptive refinement strategy is developed in conjunction with the collocated discrete least‐squares (CDLS) meshless method. For this, an error estimate is first developed for a CDLS meshless method. The proposed error estimator is shown to be naturally related to the least‐squares functional, providing a suitable posterior measure of the error in the solution. A mesh moving strategy is then used to displace the nodal points such that the errors are evenly distributed in the solution domain. Efficiency and effectiveness of the proposed error estimator and adaptive refinement process are tested against two hyperbolic benchmark problems, one with shocked and the other with low gradient smooth solutions. These experiments show that the proposed adaptive process is capable of producing stable and accurate results for the difficult problems considered. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
We recently proposed a transformation‐free higher‐order compact (HOC) scheme for two‐dimensional (2‐D) steady convection–diffusion equations on nonuniform Cartesian grids (Int. J. Numer. Meth. Fluids 2004; 44 :33–53). As the scheme was equipped to handle only constant coefficients for the second‐order derivatives, it could not be extended directly to curvilinear coordinates, where they invariably occur as variables. In this paper, we extend the scheme to cylindrical polar coordinates for the 2‐D convection–diffusion equations and more specifically to the 2‐D incompressible viscous flows governed by the Navier–Stokes (N–S) equations. We first apply the formulation to a problem having analytical solution and demonstrate its fourth‐order spatial accuracy. We then apply it to the flow past an impulsively started circular cylinder problem and finally to the driven polar cavity problem. We present our numerical results and compare them with established numerical and analytical and experimental results whenever available. This new approach is seen to produce excellent comparison in all the cases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A local grid refinement method is presented and applied to a three‐dimensional turbulent recirculating flow. It is based on the staggered grid arrangement. The computational domain is covered by block‐structured subgrids of different refinement levels. The exchange of information between the subgrids is fully conservative and all grids are treated implicitly. This allows for a simultaneous solution of one variable in all grids. All variables are stored in one‐dimensional arrays. The solver selected for the solution of the discretised finite difference equations is the preconditioned bi‐conjugate gradient (Bi‐CG) method. For the case examined (turbulent flow around a surface‐mounted cube), it was found that the latter method converges faster than the line solver. The locally refined mesh improved the accuracy of the pressure distribution on cube faces compared with a coarse mesh and yielded the same results as a fine single mesh, with a 62% gain in computer time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
This study investigates a fictitious domain model for the numerical solution of various incompressible viscous flows. It is based on the so‐called Navier–Stokes/Brinkman and energy equations with discontinuous coefficients all over an auxiliary embedding domain. The solid obstacles or walls are taken into account by a penalty technique. Some volumic control terms are directly introduced in the governing equations in order to prescribe immersed boundary conditions. The implicit numerical scheme, which uses an upwind finite volume method on staggered Cartesian grids, is of second‐order accuracy in time and space. A multigrid local mesh refinement is also implemented, using the multi‐level Zoom Flux Interface Correction (FIC) method, in order to increase the precision where it is needed in the domain. At each time step, some iterations of the augmented Lagrangian method combined with a preconditioned Krylov algorithm allow the divergence‐free velocity and pressure fields be solved for. The tested cases concern external steady or unsteady flows around a circular cylinder, heated or not, and the channel flow behind a backward‐facing step. The numerical results are shown in good agreement with other published numerical or experimental data. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
This paper reports numerical convergence study for simulations of steady shock‐induced combustion problems with high‐resolution shock‐capturing schemes. Five typical schemes are used: the Roe flux‐based monotone upstream‐centered scheme for conservation laws (MUSCL) and weighted essentially non‐oscillatory (WENO) schemes, the Lax–Friedrichs splitting‐based non‐oscillatory no‐free parameter dissipative (NND) and WENO schemes, and the Harten–Yee upwind total variation diminishing (TVD) scheme. These schemes are implemented with the finite volume discretization on structured quadrilateral meshes in dimension‐by‐dimension way and the lower–upper symmetric Gauss–Seidel (LU–SGS) relaxation method for solving the axisymmetric multispecies reactive Navier–Stokes equations. Comparison of iterative convergence between different schemes has been made using supersonic combustion flows around a spherical projectile with Mach numbers M = 3.55 and 6.46 and a ram accelerator with M = 6.7. These test cases were regarded as steady combustion problems in literature. Calculations on gradually refined meshes show that the second‐order NND, MUSCL, and TVD schemes can converge well to steady states from coarse through fine meshes for M = 3.55 case in which shock and combustion fronts are separate, whereas the (nominally) fifth‐order WENO schemes can only converge to some residual level. More interestingly, the numerical results show that all the schemes do not converge to steady‐state solutions for M = 6.46 in the spherical projectile and M = 6.7 in the ram accelerator cases on fine meshes although they all converge on coarser meshes or on fine meshes without chemical reactions. The result is based on the particular preconditioner of LU–SGS scheme. Possible reasons for the nonconvergence in reactive flow simulation are discussed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号