共查询到20条相似文献,搜索用时 0 毫秒
1.
A three‐dimensional numerical model is developed for incompressible free surface flows. The model is based on the unsteady Reynolds‐averaged Navier–Stokes equations with a non‐hydrostatic pressure distribution being incorporated in the model. The governing equations are solved in the conventional sigma co‐ordinate system, with a semi‐implicit time discretization. A fractional step method is used to enable the pressure to be decomposed into its hydrostatic and hydrodynamic components. At every time step one five‐diagonal system of equations is solved to compute the water elevations and then the hydrodynamic pressure is determined from a pressure Poisson equation. The model is applied to three examples to simulate unsteady free surface flows where non‐hydrostatic pressures have a considerable effect on the velocity field. Emphasis is focused on applying the model to wave problems. Two of the examples are about modelling small amplitude waves where the hydrostatic approximation and long wave theory are not valid. The other example is the wind‐induced circulation in a closed basin. The numerical solutions are compared with the available analytical solutions for small amplitude wave theory and very good agreement is obtained. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
2.
A vertically integrated non‐linear dispersive wave model is expressed in non‐orthogonal curvilinear co‐ordinate system for simulating shallow or deep water wave motions in regions of arbitrary geometry. Both dependent and independent variables are transformed so that an irregular physical domain is converted into a rectangular computational domain with contravariant velocities. Thus, the wall condition for enclosures surrounding a typical physical domain, such as a channel, port or harbor, is satisfied accurately and easily. The numerical scheme is based on staggered grid finite‐difference approximations, which result in implicit formulations for the momentum equations and semi‐explicit formulation for the continuity equation. Test cases of linear wave propagation in converging, diverging and circular channels are performed to check the reliability of model simulations against the analytical solutions. Cnoidal waves of different steepness values in a circular channel are also considered as examples to non‐linear wave propagation within curved walls. In closing, remarks concerning versatility and practical uses of the numerical model are made. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
3.
An implicit finite difference model in the σ co‐ordinate system is developed for non‐hydrostatic, two‐dimensional vertical plane free‐surface flows. To accurately simulate interaction of free‐surface flows with uneven bottoms, the unsteady Navier–Stokes equations and the free‐surface boundary condition are solved simultaneously in a regular transformed σ domain using a fully implicit method in two steps. First, the vertical velocity and pressure are expressed as functions of horizontal velocity. Second, substituting these relationship into the horizontal momentum equation provides a block tri‐diagonal matrix system with the unknown of horizontal velocity, which can be solved by a direct matrix solver without iteration. A new treatment of non‐hydrostatic pressure condition at the top‐layer cell is developed and found to be important for resolving the phase of wave propagation. Additional terms introduced by the σ co‐ordinate transformation are discretized appropriately in order to obtain accurate and stable numerical results. The developed model has been validated by several tests involving free‐surface flows with strong vertical accelerations and non‐linear waves interacting with uneven bottoms. Comparisons among numerical results, analytical solutions and experimental data show the capability of the model to simulate free‐surface flow problems. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
4.
5.
A new fully non‐hydrostatic model is presented by simulating three‐dimensional free surface flow on a vertical boundary‐fitted coordinate system. A projection method, known as pressure correction technique, is employed to solve the incompressible Euler equations. A new grid arrangement is proposed under a horizontal Cartesian grid framework and vertical boundary‐fitted coordinate system. The resulting model is relatively simple. Moreover, the discretized Poisson equation for pressure correction is symmetric and positive definite, and thus it can be solved effectively by the preconditioned conjugate gradient method. Several test cases of surface wave motion are used to demonstrate the capabilities and numerical stability of the model. Comparisons between numerical results and analytical or experimental data are presented. It is shown that the proposed model could accurately and effectively resolve the motion of short waves with only two layers, where wave shoaling, nonlinearity, dispersion, refraction, and diffraction phenomena occur. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
6.
M. F. Carfora 《国际流体数值方法杂志》2000,34(6):527-558
A semi‐implicit, semi‐Lagrangian, mixed finite difference–finite volume model for the shallow water equations on a rotating sphere is introduced and discussed. Its main features are the vectorial treatment of the momentum equation and the finite volume approach for the continuity equation. Pressure and Coriolis terms in the momentum equation and velocity in the continuity equation are treated semi‐implicitly. Moreover, a splitting technique is introduced to preserve symmetry of the numerical scheme. An alternative asymmetric scheme (without splitting) is also introduced and the efficiency of both is discussed. The model is shown to be conservative in geopotential height and unconditionally stable for 0.5≤θ≤1. Numerical experiments on two standard test problems confirm the performance of the model. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
7.
S.B. Beale 《国际流体数值方法杂志》1999,30(5):523-540
A novel method to generate body‐fitted grids based on the direct solution for three scalar functions is derived. The solution for scalar variables ξ, η and ζ is obtained with a conventional finite volume method based on a physical space formulation. The grid is adapted or re‐zoned to eliminate the residual error between the current solution and the desired solution, by means of an implicit grid‐correction procedure. The scalar variables are re‐mapped and the process is reiterated until convergence is obtained. Calculations are performed for a variety of problems by assuming combined Dirichlet–Neumann and pure Dirichlet boundary conditions involving the use of transcendental control functions, as well as functions designed to effect grid control automatically on the basis of boundary values. The use of dimensional analysis to build stable exponential functions and other control functions is demonstrated. Automatic procedures are implemented: one based on a finite difference approximation to the Cristoffel terms assuming local‐boundary orthogonality, and another designed to procure boundary orthogonality. The performance of the new scheme is shown to be comparable with that of conventional inverse methods when calculations are performed on benchmark problems through the application of point‐by‐point and whole‐field solution schemes. Advantages and disadvantages of the present method are critically appraised. Copyright © 1999 National Research Council of Canada. 相似文献
8.
An implicit finite volume model in sigma coordinate system is developed to simulate two‐dimensional (2D) vertical free surface flows, deploying a non‐hydrostatic pressure distribution. The algorithm is based on a projection method which solves the complete 2D Navier–Stokes equations in two steps. First the pressure term in the momentum equations is excluded and the resultant advection–diffusion equations are solved. In the second step the continuity and the momentum equation with only the pressure terms are solved to give a block tri‐diagonal system of equation with pressure as the unknown. This system can be solved by a direct matrix solver without iteration. A new implicit treatment of non‐hydrostatic pressure, similar to the lower layers is applied to the top layer which makes the model free of any hydrostatic pressure assumption all through the water column. This treatment enables the model to evaluate both free surface elevation and wave celerity more accurately. A series of numerical tests including free‐surface flows with significant vertical accelerations and nonlinear behaviour in shoaling zone are performed. Comparison between numerical results, analytical solutions and experimental data demonstrates a satisfactory performance. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
9.
A semi‐implicit finite difference model based on the three‐dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi‐implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
10.
We extend the explicit in time high‐order triangular discontinuous Galerkin (DG) method to semi‐implicit (SI) and then apply the algorithm to the two‐dimensional oceanic shallow water equations; we implement high‐order SI time‐integrators using the backward difference formulas from orders one to six. The reason for changing the time‐integration method from explicit to SI is that explicit methods require a very small time step in order to maintain stability, especially for high‐order DG methods. Changing the time‐integration method to SI allows one to circumvent the stability criterion due to the gravity waves, which for most shallow water applications are the fastest waves in the system (the exception being supercritical flow where the Froude number is greater than one). The challenge of constructing a SI method for a DG model is that the DG machinery requires not only the standard finite element‐type area integrals, but also the finite volume‐type boundary integrals as well. These boundary integrals pose the biggest challenge in a SI discretization because they require the construction of a Riemann solver that is the true linear representation of the nonlinear Riemann problem; if this condition is not satisfied then the resulting numerical method will not be consistent with the continuous equations. In this paper we couple the SI time‐integrators with the DG method while maintaining most of the usual attributes associated with DG methods such as: high‐order accuracy (in both space and time), parallel efficiency, excellent stability, and conservation. The only property lost is that of a compact communication stencil typical of time‐explicit DG methods; implicit methods will always require a much larger communication stencil. We apply the new high‐order SI DG method to the shallow water equations and show results for many standard test cases of oceanic interest such as: standing, Kelvin and Rossby soliton waves, and the Stommel problem. The results show that the new high‐order SI DG model, that has already been shown to yield exponentially convergent solutions in space for smooth problems, results in a more efficient model than its explicit counterpart. Furthermore, for those problems where the spatial resolution is sufficiently high compared with the length scales of the flow, the capacity to use high‐order (HO) time‐integrators is a necessary complement to the employment of HO space discretizations, since the total numerical error would be otherwise dominated by the time discretization error. In fact, in the limit of increasing spatial resolution, it makes little sense to use HO spatial discretizations coupled with low‐order time discretizations. Published in 2009 by John Wiley & Sons, Ltd. 相似文献
11.
This paper proposes a new immersed boundary (IB) method for solving fluid flow problems in the presence of rigid objects which are not represented by the mesh. Solving the flow around objects with complex shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is needed. Important benefit would be reached if we are able to solve the flow without the need of generating a mesh that fits the shape of the immersed objects. This work presents a finite element IB method using a discretization covering the entire domain of interest, including the volume occupied by immersed objects, and which produces solutions of the flow satisfying accurately the boundary conditions at the surface of immersed bodies. In other words the finite element solution represents accurately the presence of immersed bodies while the mesh does not. This is done by including additional degrees of freedom on interface cut elements which are then eliminated at element level. The boundary of immersed objects is defined using a level set function. Solutions are shown for various flow problems and the accuracy of the present approach is measured with respect to solutions obtained on body‐fitted meshes. Copyright © 2010 Crown in the right of Canada. 相似文献
12.
Roy A. Walters 《国际流体数值方法杂志》2005,49(7):721-737
The objective of this research is to develop a model that will adequately simulate the dynamics of tsunami propagating across the continental shelf. In practical terms, a large spatial domain with high resolution is required so that source areas and runup areas are adequately resolved. Hence efficiency of the model is a major issue. The three‐dimensional Reynolds averaged Navier–Stokes equations are depth‐averaged to yield a set of equations that are similar to the shallow water equations but retain the non‐hydrostatic pressure terms. This approach differs from the development of the Boussinesq equations where pressure is eliminated in favour of high‐order velocity and geometry terms. The model gives good results for several test problems including an oscillating basin, propagation of a solitary wave, and a wave transformation over a bar. The hydrostatic and non‐hydrostatic versions of the model are compared for a large‐scale problem where a fault rupture generates a tsunami on the New Zealand continental shelf. The model efficiency is also very good and execution times are about a factor of 1.8 to 5 slower than the standard shallow water model, depending on problem size. Moreover, there are at least two methods to increase model accuracy when warranted: choosing a more optimal vertical interpolation function, and dividing the problem into layers. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
13.
A numerical analysis has been performed for three‐dimensional developing turbulent flow in a 180° bend tube with straight inlet and outlet section used by an algebraic Reynolds stress model. To our knowledge, numerical investigations, which show the detailed comparison between calculated results and experimental data including distributions of Reynolds stresses, are few and far between. From this point of view, an algebraic Reynolds stress model in conjunction with boundary‐fitted co‐ordinate system is applied to a 180° bend tube in order to predict the anisotropic turbulent structure precisely. Calculated results are compared with the experimental data including distributions of Reynolds stresses. As a result of this analysis, it has been found that the calculated results show a comparatively good agreement with the experimental data of the time‐averaged velocity and the secondary vectors in both the bent tube and straight outlet sections. For example, the location of the maximum streamwise velocity, which appears near the top or bottom wall in the bent tube, is predicted correctly by the present method. As for the comparison of Reynolds stresses, the present method has been found to simulate many characteristic features of streamwise normal stress and shear stresses in the bent tube qualitatively and has a tendency to under‐predict its value quantitatively. Judging from the comparison between the calculated and the experimental results, the algebraic Reynolds stress model is applicable to the developing turbulent flow in a bent tube that is known as a flow with a strong convective effect. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
14.
A novel approach that embeds the Boussinesq‐type like equations into an implicit non‐hydrostatic model (NHM) is developed. Instead of using an integration approach, Boussinesq‐type like equations with a reference velocity under a virtual grid system are introduced to analytically obtain an analytical form of pressure distribution at the top layer. To determine the size of vertical layers in the model, a top‐layer control technique is proposed and the reference location is employed to optimize linear wave dispersion property. The efficiency and accuracy of this NHM with Boussinesq‐type like equations (NHM‐BTE) are critically examined through four free‐surface wave examples. Overall model results show that NHM‐BTE using only two vertical layers is capable of accurately simulating highly dispersive wave motion and wave transformation over irregular bathymetry. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
15.
Vincenzo Casulli 《国际流体数值方法杂志》1999,30(4):425-440
In this paper a semi‐implicit finite difference model for non‐hydrostatic, free‐surface flows is analyzed and discussed. It is shown that the present algorithm is generally more accurate than recently developed models for quasi‐hydrostatic flows. The governing equations are the free‐surface Navier–Stokes equations defined on a general, irregular domain of arbitrary scale. The momentum equations, the incompressibility condition and the equation for the free‐surface are integrated by a semi‐implicit algorithm in such a fashion that the resulting numerical solution is mass conservative and unconditionally stable with respect to the gravity wave speed, wind stress, vertical viscosity and bottom friction. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
16.
Dartzi Pan 《国际流体数值方法杂志》2006,50(6):733-750
A simple and effective immersed boundary method using volume of body (VOB) function is implemented on unstructured Cartesian meshes. The flow solver is a second‐order accurate implicit pressure‐correction method for the incompressible Navier–Stokes equations. The domain inside the immersed body is viewed as being occupied by the same fluid as outside with a prescribed divergence‐free velocity field. Under this view a fluid–body interface is similar to a fluid–fluid interface encountered in the volume of fluid (VOF) method for the two‐fluid flow problems. The body can thus be identified by the VOB function similar to the VOF function. In fluid–body interface cells the velocity is obtained by a volume‐averaged mixture of body and fluid velocities. The pressure inside the immersed body satisfies the same pressure Poisson equation as outside. To enhance stability and convergence, multigrid methods are developed to solve the difference equations for both pressure and velocity. Various steady and unsteady flows with stationary and moving bodies are computed to validate and to demonstrate the capability of the current method. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
17.
An alternative discretization of pressure‐correction equations within pressure‐correction schemes for the solution of the incompressible Navier–Stokes equations is introduced, which improves the convergence and robustness properties of such schemes for non‐orthogonal grids. As against standard approaches, where the non‐orthogonal terms usually are just neglected, the approach allows for a simplification of the pressure‐correction equation to correspond to 5‐point or 7‐point computational molecules in two or three dimensions, respectively, but still incorporates the effects of non‐orthogonality. As a result a wide range (including rather high values) of underrelaxation factors can be used, resulting in an increased overall performance of the underlying pressure‐correction schemes. Within this context, a second issue of the paper is the investigation of the accuracy to which the pressure‐correction equation should be solved in each pressure‐correction iteration. The scheme is investigated for standard test cases and, in order to show its applicability to practical flow problems, for a more complex configuration of a micro heat exchanger. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
18.
In this paper, a semi‐implicit numerical model for two‐ and three‐dimensional free‐surface flows will be formulated in such a fashion as to intrinsically account for subgrid bathymetric details. It will be shown that with the proposed subgrid approach the model accuracy can be substantially improved without increasing the corresponding computational effort. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
19.
Vincenzo Casulli 《国际流体数值方法杂志》2009,60(4):391-408
A new wetting and drying algorithm for numerical modeling free‐surface flows is proposed and analyzed. A well structured, mildly nonlinear system for the discrete water surface elevation is derived from the governing differential equations by requiring a correct mass balance in wet areas as well as in the region of transition from wet to dry and from dry to wet. Existence and uniqueness of the numerical solution, along with a convergence analysis of an iterative scheme for the mildly nonlinear system, is provided. The present algorithm is devised to use high‐resolution bathymetric data at subgrid level. The resulting model is quite efficient, does not require a threshold value for minimal water depth, does not produce un‐physical negative water depths and generates accurate results with relatively coarse mesh and large time step size. These features are illustrated on a severe test‐case with known analytical solution. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
20.
In this paper a layer‐structured finite volume model for non‐hydrostatic 3D environmental free surface flow is presented and applied to several test cases, which involve the computation of gravity waves. The 3D unsteady momentum and mass conservation equations are solved in a collocated grid made of polyhedrons, which are built from a 2D horizontal unstructured mesh, by just adding several horizontal layers. The mesh built in such a way is unstructured in the horizontal plane, but structured in the vertical direction. This procedure simplifies the mesh generation and at the same time it produces a well‐oriented mesh for stratified flows, which are common in environmental problems. The model reduces to a 2D depth‐averaged shallow water model when one single layer is defined in the mesh. Pressure–velocity coupling is achieved by the Semi‐Implicit Method for Pressure‐Linked Equations algorithm, using Rhie–Chow interpolation to stabilize the pressure field. An attractive property of the model proposed is the ability to compute the propagation of short waves with a rather coarse vertical discretization. Several test cases are solved in order to show the capabilities and numerical stability of the model, including a rectangular free oscillating basin, a radially symmetric wave, short wave propagation over a 1D bar, solitary wave runup on a vertical wall, and short wave refraction over a 2D shoal. In all the cases the numerical results are compared either with analytical or with experimental data. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献