首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For two‐phase flow models, upwind schemes are most often difficult do derive, and expensive to use. Centred schemes, on the other hand, are simple, but more dissipative. The recently proposed multi‐stage (MUSTA ) method is aimed at coming close to the accuracy of upwind schemes while retaining the simplicity of centred schemes. So far, the MUSTA approach has been shown to work well for the Euler equations of inviscid, compressible single‐phase flow. In this work, we explore the MUSTA scheme for a more complex system of equations: the drift‐flux model, which describes one‐dimensional two‐phase flow where the motions of the phases are strongly coupled. As the number of stages is increased, the results of the MUSTA scheme approach those of the Roe method. The good results of the MUSTA scheme are dependent on the use of a large‐enough local grid. Hence, the main benefit of the MUSTA scheme is its simplicity, rather than CPU ‐time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A finite‐volume multi‐stage (FMUSTA) scheme is proposed for simulating the free‐surface shallow‐water flows with the hydraulic shocks. On the basis of the multi‐stage (MUSTA) method, the original Riemann problem is transformed to an independent MUSTA mesh. The local Lax–Friedrichs scheme is then adopted for solving the solution of the Riemann problem at the cell interface on the MUSTA mesh. The resulting first‐order monotonic FMUSTA scheme, which does not require the use of the eigenstructure and the special treatment of entropy fixes, has the generality as well as simplicity. In order to achieve the high‐resolution property, the monotonic upstream schemes for conservation laws (MUSCL) method are used. For modeling shallow‐water flows with source terms, the surface gradient method (SGM) is adopted. The proposed schemes are verified using the simulations of six shallow‐water problems, including the 1D idealized dam breaking, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the circular dam breaking and two dam‐break experiments. The simulated results by the proposed schemes are in satisfactory agreement with the exact solutions and experimental data. It is demonstrated that the proposed FMUSTA schemes have superior overall numerical accuracy among the schemes tested such as the commonly adopted Roe and HLL schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
We present a theoretical solution for the Riemann problem for the five‐equation two‐phase non‐conservative model of Saurel and Abgrall. This solution is then utilized in the construction of upwind non‐conservative methods to solve the general initial‐boundary value problem for the two‐phase flow model in non‐conservative form. The basic upwind scheme constructed is the non‐conservative analogue of the Godunov first‐order upwind method. Second‐order methods in space and time are then constructed via the MUSCL and ADER approaches. The methods are systematically assessed via a series of test problems with theoretical solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The scope of this paper is three fold. We first formulate upwind and symmetric schemes for hyperbolic equations with non‐conservative terms. Then we propose upwind numerical schemes for conservative and non‐conservative systems, based on a Riemann solver, the initial conditions of which are evolved non‐linearly in time, prior to a simple linearization that leads to closed‐form solutions. The Riemann solver is easily applied to complicated hyperbolic systems. Finally, as an example, we formulate conservative schemes for the three‐dimensional Euler equations for general compressible materials and give numerical results for a variety of test problems for ideal gases in one and two space dimensions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Finite volume methods on structured and unstructured meshes commonly use second‐order, upwind‐biased linear reconstruction schemes to approximate the convective terms. Limiters are employed to reduce the inherent variable overshoot and undershoot of these schemes in discontinuous regions; however, they also can significantly increase the numerical dissipation of a solution in smooth regions. This paper presents a novel nonlocal, nonmonotonic (NLNM) limiter developed by enforcing cell minima and maxima on dependent variable values projected to cell faces. The minimum and maximum values for a cell are determined primarily through recursive reference to the minimum and maximum values of its upwind neighbors. The new limiter has been implemented into an existing flow solver. Various test cases are presented, which highlight the ability of the NLNM limiter to eliminate nonphysical oscillations while maintaining negligible levels of limiter‐induced dissipation into the solution. Results from the new limiter are compared with those from other limited and unlimited second‐order upwind and first‐order upwind schemes. For the cases examined in the study, the NLNM limiter was found to improve accuracy without significantly decreasing overall simulation efficiency and robustness.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
When solute transport is advection‐dominated, the advection‐dispersion equation approximates to a hyperbolic‐type partial differential equation, and finite difference and finite element numerical approximation methods become prone to artificial oscillations. The upwind scheme serves to correct these responses to produce a more realistic solution. The upwind scheme is reviewed and then applied to the advection‐dispersion equation with local operators for the first‐order upwinding numerical approximation scheme. The traditional explicit and implicit schemes, as well as the Crank‐Nicolson scheme, are developed and analyzed for numerical stability to form a comparison base. Two new numerical approximation schemes are then proposed, namely, upwind–Crank‐Nicolson scheme, where only for the advection term is applied, and weighted upwind‐downwind scheme. These newly developed schemes are analyzed for numerical stability and compared to the traditional schemes. It was found that an upwind–Crank‐Nicolson scheme is appropriate if the Crank‐Nicolson scheme is only applied to the advection term of the advection‐dispersion equation. Furthermore, the proposed explicit weighted upwind‐downwind finite difference numerical scheme is an improvement on the traditional explicit first‐order upwind scheme, whereas the implicit weighted first‐order upwind‐downwind finite difference numerical scheme is stable under all assumptions when the appropriate weighting factor (θ) is assigned.  相似文献   

7.
In this paper, a new family of high‐order relaxation methods is constructed. These methods combine general higher‐order reconstruction for spatial discretization and higher order implicit‐explicit schemes or TVD Runge–Kutta schemes for time integration of relaxing systems. The new methods retain all the attractive features of classical relaxation schemes such as neither Riemann solvers nor characteristic decomposition are needed. Numerical experiments with the shallow‐water equations in both one and two space dimensions on flat and non‐flat topography demonstrate the high resolution and the ability of our relaxation schemes to better resolve the solution in the presence of shocks and dry areas without using either Riemann solvers or front tracking techniques. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, first‐order upwind implicit schemes are considered. The traditional tridiagonal scheme is rewritten as a sum of two bidiagonal schemes in order to produce a simpler method better suited for unsteady transcritical flows. On the other hand, the origin of the instabilities associated to the use of upwind implicit methods for shock propagations is identified and a new stability condition for non‐linear problems is proposed. This modification produces a robust, simple and accurate upwind semi‐explicit scheme suitable for discontinuous flows with high Courant–Friedrichs–Lewy (CFL) numbers. The discretization at the boundaries is based on the condition of global mass conservation thus enabling a fully conservative solution for all kind of boundary conditions. The performance of the proposed technique will be shown in the solution of the inviscid Burgers' equation, in an ideal dambreak test case, in some steady open channel flow test cases with analytical solution and in a realistic flood routing problem, where stable and accurate solutions will be presented using CFL values up to 100. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
An upstream flux‐splitting finite‐volume (UFF) scheme is proposed for the solutions of the 2D shallow water equations. In the framework of the finite‐volume method, the artificially upstream flux vector splitting method is employed to establish the numerical flux function for the local Riemann problem. Based on this algorithm, an UFF scheme without Jacobian matrix operation is developed. The proposed scheme satisfying entropy condition is extended to be second‐order‐accurate using the MUSCL approach. The proposed UFF scheme and its second‐order extension are verified through the simulations of four shallow water problems, including the 1D idealized dam breaking, the oblique hydraulic jump, the circular dam breaking, and the dam‐break experiment with 45° bend channel. Meanwhile, the numerical performance of the UFF scheme is compared with those of three well‐known upwind schemes, namely the Osher, Roe, and HLL schemes. It is demonstrated that the proposed scheme performs remarkably well for shallow water flows. The simulated results also show that the UFF scheme has superior overall numerical performances among the schemes tested. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This article is to continue the present author's work (International Journal of Computational Fluid Dynamics (2009) 23 (9), 623–641) on studying the structure of solutions of the Riemann problem for a system of three conservation laws governing two-phase flows. While existing solutions are limited and found quite recently for the Baer and Nunziato equations, this article presents the first instance of an exact solution of the Riemann problem for two-phase flow in gas–liquid mixture. To demonstrate the structure of the solution, we use a hyperbolic conservative model with mechanical equilibrium and without velocity equilibrium. The Riemann problem solution for the model equations comprises a set of elementary waves, rarefaction and discontinuous waves of various types. In particular, such a solution treats both the wave structure and the intermediate states of the two-phase gas–liquid mixture. The resulting exact Riemann solver is fully non-linear, direct and complete. On this basis then, we use locally the exact Riemann solver for the two-phase flow in gas–liquid mixture within the framework of finite volume upwind Godunov methods. In order to demonstrate the effectiveness and accuracy of the proposed solver, we consider a series of test problems selected from the open literature and compare the exact and numerical results by using upwind Godunov methods, showing excellent oscillation-free results in two-phase fluid flow problems.  相似文献   

11.
High‐resolution total variation diminishing (TVD) schemes are widely used for the numerical approximation of hyperbolic conservation laws. Their extension to equations with source terms involving spatial derivatives is not obvious. In this work, efficient ways of constructing conservative schemes from the conservative, non‐conservative or characteristic form of the equations are described in detail. An upwind, as opposed to a pointwise, treatment of the source terms is adopted here, and a new technique is proposed in which source terms are included in the flux limiter functions to get a complete second‐order compact scheme. A new correction to fix the entropy problem is also presented and a robust treatment of the boundary conditions according to the discretization used is stated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Transient, advective transport of a contaminant into a clean domain will exhibit a moving sharp front that separates contaminated and clean regions. Due to ‘numerical diffusion’—the combined effects of ‘cross‐wind diffusion’ and ‘artificial dispersion’—a numerical solution based on a first‐order (upwind) treatment will smear out the sharp front. The use of higher‐order schemes, e.g. QUICK (quadratic upwinding) reduces the smearing but can introduce non‐physical oscillations in the solution. A common approach to reduce numerical diffusion without oscillations is to use a scheme that blends low‐order and high‐order approximations of the advective transport. Typically, the blending is based on a parameter that measures the local monotonicity in the predicted scalar field. In this paper, an alternative approach is proposed for use in scalar transport problems where physical bounds CLow?C?CHigh on the scalar are known a priori. For this class of problems, the proposed scheme switches from a QUICK approximation to an upwind approximation whenever the predicted upwind nodal value falls outside of the physical range [CLow, CHigh]. On two‐dimensional steady‐state and one‐dimensional transient test problems predictions obtained with the proposed scheme are essentially indistinguishable from those obtained with monotonic flux‐limiter schemes. An analysis of the modified equation explains the observed performance of first‐ and second‐order time‐stepping schemes in predicting the advective transport of a step. In application to the transient two‐dimensional problem of contaminate transport into a streambed, predictions obtained with the proposed flux‐limiter scheme agree with those obtained with a scheme from the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
We present first‐ and higher‐order non‐oscillatory primitive (PRI) centred (CE) numerical schemes for solving systems of hyperbolic partial differential equations written in primitive (or non‐conservative) form. Non‐conservative systems arise in a variety of fields of application and they are adopted in that form for numerical convenience, or more importantly, because they do not posses a known conservative form; in the latter case there is no option but to apply non‐conservative methods. In addition we have chosen a centred, as distinct from upwind, philosophy. This is because the systems we are ultimately interested in (e.g. mud flows, multiphase flows) are exceedingly complicated and the eigenstructure is difficult, or very costly or simply impossible to obtain. We derive six new basic schemes and then we study two ways of extending the most successful of these to produce second‐order non‐oscillatory methods. We have used the MUSCL‐Hancock and the ADER approaches. In the ADER approach we have used two ways of dealing with linear reconstructions so as to avoid spurious oscillations: the ADER TVD scheme and ADER with ENO reconstruction. Extensive numerical experiments suggest that all the schemes are very satisfactory, with the ADER/ENO scheme being perhaps the most promising, first for dealing with source terms and secondly, because higher‐order extensions (greater than two) are possible. Work currently in progress includes the application of some of these ideas to solve the mud flow equations. The schemes presented are generic and can be applied to any hyperbolic system in non‐conservative form and for which solutions include smooth parts, contact discontinuities and weak shocks. The advantage of the schemes presented over upwind‐based methods is simplicity and efficiency, and will be fully realized for hyperbolic systems in which the provision of upwind information is very costly or is not available. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Families of flux‐continuous, locally conservative, finite‐volume schemes have been developed for solving the general tensor pressure equation of petroleum reservoir simulation on structured and unstructured grids. The schemes are applicable to diagonal and full tensor pressure equation with generally discontinuous coefficients and remove the O(1) errors introduced by standard reservoir simulation schemes when applied to full tensor flow approximation. The family of flux‐continuous schemes is quantified by a quadrature parameterization. Improved convergence using the quadrature parameterization has been established for the family of flux‐continuous schemes. When applied to strongly anisotropic full‐tensor permeability fields the schemes can fail to satisfy a maximum principle (as with other FEM and finite‐volume methods) and result in spurious oscillations in the numerical pressure solution. This paper presents new non‐linear flux‐splitting techniques that are designed to compute solutions that are free of spurious oscillations. Results are presented for a series of test‐cases with strong full‐tensor anisotropy ratios. In all cases the non‐linear flux‐splitting methods yield pressure solutions that are free of spurious oscillations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In the present study improvements to numerical algorithms for the solution of the compressible Euler equations at low Mach numbers are investigated. To solve flow problems for a wide range of Mach numbers, from the incompressible limit to supersonic speeds, preconditioning techniques are frequently employed. On the other hand, one can achieve the same aim by using a suitably modified acoustic damping method. The solution algorithm presently under consideration is based on Roe's approximate Riemann solver [Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 1981; 43 : 357–372] for non‐structured meshes. The numerical flux functions are modified by using Turkel's preconditioning technique proposed by Viozat [Implicit upwind schemes for low Mach number compressible flows. INRIA, Rapport de Recherche No. 3084, January 1997] for compressible Euler equations and by using a modified acoustic damping of the stabilization term proposed in the present study. These methods allow the compressible Euler equations at low‐Mach number flows to be solved, and they are consistent in time. The efficiency and accuracy of the proposed modifications have been assessed by comparison with experimental data and other numerical results in the literature. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
One of the techniques available for optimising parameters that regulate dispersion and dissipation effects in finite difference schemes is the concept of minimised integrated exponential error for low dispersion and low dissipation. In this paper, we work essentially with the two‐dimensional (2D) Corrected Lax–Friedrichs and Lax–Friedrichs schemes applied to the 2D scalar advection equation. We examine the shock‐capturing properties of these two numerical schemes, and observe that these methods are quite effective from the point of being able to control computational noise and having a large range of stability. To improve the shock‐capturing efficiency of these two methods, we derive composite methods using the idea of predictor/corrector or a linear combination of the two schemes. The optimal cfl number for some of these composite schemes are computed. Some numerical experiments are carried out in two dimensions such as cylindrical explosion, shock‐focusing, dam‐break and Riemann gas dynamics tests. The modified equations of some of the composite schemes when applied to the 2D scalar advection equation are obtained. We also perform some convergence tests to obtain the order of accuracy and show that better results in terms of shock‐capturing property are obtained when the optimal cfl obtained using minimised integrated exponential error for low dispersion and low dissipation is used. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We propose a variable relaxation scheme for the simulation of 1D, two-phase, multicomponent flow in porous media. For these strongly nonlinear systems, traditional high order upwind schemes are impractical: Riemann solutions are not directly available when the phase behavior is complex, and the systems are weakly hyperbolic at isolated points. Relaxation schemes avoid the dependency on the eigenstructure and nonlinear Riemann solvers by approximating the original system with a strongly hyperbolic linear system. We exploit the known information about the eigenvalues to construct first order and second order variable relaxation schemes with much reduced numerical diffusion as compared to the standard relaxation formulations. The proposed second order variable relaxation scheme is competitive in accuracy and efficiency with a third order component-wise ENO reconstruction, and performs at least as well as second order component-wise TVD schemes.  相似文献   

19.
Numerical methods based upon the Riemann Problem are considered for solving the general initial-value problem for the Euler equations applied to real gases. Most of such methods use an approximate solution of the Riemann problem when real gases are involved. These approximate Riemann solvers do not yield always a good resolution of the flow field, especially for contact surfaces and expansion waves. Moreover, approximate Riemann solvers cannot produce exact solutions for the boundary points. In order to overcome these shortcomings, an exact solution of the Riemann problem is developed, valid for real gases. The method is applied to detonation products obeying a 5th order virial equation of state, in the shock-tube test case. Comparisons between our solver, as implemented in Random Choice Method, and finite difference methods, which do not employ a Riemann solver, are given.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

20.
This paper reports a comparative study on the stability limits of nine finite difference schemes to discretize the one‐dimensional unsteady convection–diffusion equation. The tested schemes are: (i) fourth‐order compact; (ii) fifth‐order upwind; (iii) fourth‐order central differences; (iv) third‐order upwind; (v) second‐order central differences; and (vi) first‐order upwind. These schemes were used together with Runge–Kutta temporal discretizations up to order six. The remaining schemes are the (vii) Adams–Bashforth central differences, (viii) the Quickest and (ix) the Leapfrog central differences. In addition, the dispersive and dissipative characteristics of the schemes were compared with the exact solution for the pure advection equation, or simple first or second derivatives, and numerical experiments confirm the Fourier analysis. The results show that fourth‐order Runge–Kutta, together with central schemes, show good conditional stability limits and good dispersive and dissipative spectral resolution. Overall the fourth‐order compact is the recommended scheme. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号