首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new polyhydroxylated steroids, (2β,3β,4α,5α,8β,11β)‐4‐methylergost‐24(28)‐ene‐2,3,8,11‐tetrol‐( 1 ) and (3β,5α,6β)‐ergosta‐22,24(28)‐diene‐3,5,6,19‐tetrol ( 3 ), together with the six known related steroids 2 and 4 – 8 , were isolated from the Hainan soft coral Sinularia sp. Their structures were elucidated on the basis of spectroscopic analysis and by comparison with previously reported data. The structure of the known compound 9 (hyrtiosterol) was revised as 2 by extensive analysis of the ROESY data and by the NOE difference experiment.  相似文献   

2.
Three new eremophilane‐type sesquiterpenes, (6β,8α)‐6‐(acetyloxy)‐8‐hydroxyeremophil‐7(11)‐en‐12,8‐olide ( 1 ), (6α,8α)‐6‐hydroxyeremophil‐7(11)‐en‐12,8‐olide ( 2 ), and (6α,8α)‐6‐(acetyloxy)eremophil‐7(11)‐en‐12,8‐olide ( 3 ) ((8α)‐eremophil‐7(11)‐en‐12,8‐olide = (4aR,5S,8aR,9aS)‐4a,5,6,7,8,8a,9,9a‐octahydro‐3,4a,5‐trimethylnaphtho[2,3‐b]furan‐2(4H)‐one), besides the recently elucidated eremoligularin ( 4 ) and bieremoligularolide ( 5 ), as well as a new highly oxygenated monoterpene, rel‐(1R,2R,3R,4S,5S)‐p‐menthane‐1,2,3,5‐tetrol ( 12 ), together with six known constituents, i.e., the sesquiterpenes 6 and 7 , the norsesquiterpenes 8 – 10 , and the monoterpene 13 , were isolated from the roots of Ligularia muliensis. In addition, an attempt to dimerize 1 to a bieremophilenolide (Scheme) resulted in the generation of the new derivative (6β,8β)‐6‐(acetyloxy)‐8‐chloroeremophil‐7(11)‐en‐12,8‐olide ( 11 ). The new structures were established by means of detailed spectroscopic analysis (IR, FAB‐, EI‐, or HR‐ESI‐MS as well as 1D‐ and 2D‐NMR experiments). Compounds 4 and 5 were evaluated for their antitumor effects in vitro (Table 3).  相似文献   

3.
A new sterol, 5α,6α‐epoxy‐3β‐hydroxy‐(22E,24R)‐ergosta‐8,22‐dien‐7‐one ( 1 ), together with eight known sterols, 5α,6α‐epoxy‐(22E,24R)‐ergosta‐8,22‐diene‐3β,7α‐diol ( 2 ), 5α,6α‐epoxy‐(22E,24R)‐ergosta‐8,22‐diene‐3β,7β‐diol ( 3 ), 5α,6α‐epoxy‐(22E,24R)‐ergosta‐8(14),22‐diene‐3β,7α‐diol ( 4 ), 3β‐hydroxy‐(22E,24R)‐ergosta‐5,8,22‐trien‐7‐one ( 5 ), ergosterol peroxide ( 6 ), clerosterol ( 7 ), decortinol ( 8 ), and decortinone ( 9 ), were isolated from the stems of Momordica charantia. Their structures were elucidated by mean of extensive spectroscopic methods, including 1H, 13C, 2D‐NMR and HR‐EI‐MS, as well as comparison with the literature data. Compounds 1 , 4 , 5 , 8 , and 91 were not cytotoxic against the SK‐Hep 1 cell line.  相似文献   

4.
Seven new compounds were isolated from the roots of Ligularia dentata, including five bisabolane‐type sesquiterpenoids (bisabolane=1‐(1,5‐dimethylhexyl)‐4‐methylcyclohexane), namely (8β,10α)‐8‐(angeloyloxy)‐5,10‐epoxybisabola‐1,3,5,7(14)‐tetraene‐2,4,11‐triol ( 1 ), (8β,10α)‐8‐(angeloyloxy)‐5,10‐epoxythiazolo[5,4‐a]bisabola‐1,3,5,7(14)‐tetraene‐4,11‐diol ( 2 ), (1α,2α,3β,5α,6β)‐1,5,8‐tris(angeloyloxy)‐10,11‐epoxy‐2,3‐dihydroxybisabol‐7(14)‐en‐4‐one ( 3 ), (1α,2α,3β,5α,6β)‐2,5,8‐tris(angeloyloxy)‐10,11‐epoxy‐1,3‐dihydroxybisabol‐7(14)‐en‐4‐one ( 4 ), and (1α,2β,3β,5α,6β)‐1,8‐bis(angeloyloxy)‐2,3‐epoxy‐5,10‐dihydroxy‐11‐methoxybisabol‐7(14)‐en‐4‐one ( 5 ) (angeloyloxy=[(2Z)‐2‐methyl‐1‐oxobut‐2‐enyl]oxy), and two lactone derivatives, (2α,3β,5α)‐2‐(acetyloxy)‐9‐methoxy‐5‐(methoxycarbonyl)‐2,3‐dimethylheptano‐5‐lactone ( 6 ), and (2β,4β)‐2‐ethyl‐5‐hydroxy‐5‐(methoxycarbonyl)‐4,5‐dimethylpentano‐4‐lactone ( 7 ) (α/β denote relative configurations), together with (2E,4R,5S)‐2‐ethylidene‐5‐(methoxycarbonyl)‐4‐methylhexano‐5‐lactone ( 8 ), a known synthetic compound. Compound 2 is the first sesquiterpenoid derivative containing the uncommon benzothiazole moiety. The structures of 1 – 8 were established by spectroscopic methods, especially 2D‐NMR and MS analyses.  相似文献   

5.
Three cholestane bisdesmosides, together with the corresponding aglycone, were isolated from the whole plant of Reineckia carnea. By detailed analysis of the 1D‐ and 2D‐NMR spectra, chemical methods, and comparison with spectral data of known compounds, the structures were determined to be (1β,3β,16β,22S)‐cholest‐5‐ene‐1,3,16,22‐tetrol ( 1 ), (1β,3β,16β,22S)‐cholest‐5‐ene‐1,3,16,22‐tetrol 1,16‐di(β‐D ‐glucopyranoside) ( 2 ), (1β,3β,16β,22S)‐cholest‐5‐ene‐1,3,16,22‐tetrol 1‐[Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranoside] 16‐(β‐D ‐glucopyranoside) ( 3 ), (1β,3β,16β,22S)‐cholest‐5‐ene‐1,3,16,22‐tetrol 1‐(β‐D ‐glucopyranoside) 16‐(3‐O‐acetyl‐β‐D ‐glucopyranoside) ( 4 ). Compounds 3 and 4 appeared to be new compounds, while compound 1 was isolated for the first from a natural source. Compound 2 was isolated from the genus Reineckia for the first time.  相似文献   

6.
Three new dammarane‐type triterpenoid saponins, 1 – 3 , were isolated and identified as (20S)‐20‐O‐[β‐D ‐xylopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl]dammar‐24‐ene‐3β,6α,12β, 20‐tetrol ( 1 ), (20S)‐6‐O‐[(E)‐but‐2‐enoyl‐(1→6)‐β‐D ‐glucopyranosyl]dammar‐24‐ene‐3β,6α,12β,20‐tetrol ( 2 ), and (20S)‐6‐O‐[β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐xylopyranosyl]dammar‐24‐ene‐3β,6α,12β,20‐tetrol ( 3 ) from the roots of Panax notoginseng (Burkill ) F.H.Chen (Araliaceae). Their structures were elucidated on the basis of spectroscopic analyses, including 1D‐ and 2D‐NMR techniques and HR‐ESI‐MS, as well as by acidic hydrolysis.  相似文献   

7.
Six new cadinane‐type sesquiterpenes, (1β,4β,5α,10α)‐1,4‐epoxymuurolan‐5‐ol ( 1 ), (4α,10β)‐4,10‐dihydroxycadin‐1(6)‐en‐5‐one ( 2 ), (2β,3α,4β,6β)‐2,3‐dihydroxycadin‐1(10)‐en‐5‐one ( 3 ), (2β,3α)‐α‐corocalene‐2,3‐diol ( 4 ), (7S)‐α‐calacoren‐14‐ol ( 5 ), and (8β,9β,10β)‐8,9‐epoxycalamenene‐3,10‐diol ( 6 ) together with one known compound, (8β,9β,10β)‐8,9‐epoxycalamenen‐10‐ol ( 7 ), were isolated from the roots of Taiwania cryptomerioides. The structures of the new constituents were essentially elucidated by spectral evidence.  相似文献   

8.
Five new sesquiterpenoids, namely, 8β‐(angeloyloxy)‐4β,6α,15‐trihydroxy‐14‐oxoguaia‐9,11(13)‐dien‐12‐oic acid 12,6‐lactone ( 1 ), 4β,6α,15‐trihydroxy‐8β‐(isobutyryloxy)‐14‐oxoguaia‐9,11(13)‐dien‐12‐oic acid 12,6‐lactone ( 2 ), 11,12,13trinorguai‐6‐ene‐4β,10β‐diol ( 3 ), (1(10)E,4E,8Z)‐8‐(angeloyloxy)‐6α,15‐dihydroxy‐14‐oxogermacra‐(1(10),4,8,11(13)‐tetraen‐12‐oic acid 12,6‐lactone ( 9 ), and (1(10)E,4β)‐8β‐(angeloyloxy)‐6α,14,15‐trihydroxygermacra‐1(10),11(13)‐dien‐12‐oic acid 12,6‐lactone ( 11 ), and three new artifacts, (1(10)E,4Z)‐8β‐(angeloyloxy)‐9α‐ethoxy‐6α,15‐dihydroxy‐14‐oxogermacra‐1(10),4,11(13)‐trien‐12‐oic acid 12,6‐lactone ( 6 ), (1(10)E,4Z)‐8β‐(angeloyloxy)‐9α,13‐diethoxy‐6α,15‐dihydroxy‐14‐oxogermacra‐1(10),4‐dien‐12‐oic acid 12,6‐lactone ( 7 ), and (1(10)E,4Z)‐8β‐(angeloyloxy)‐9α‐ethoxy‐6α,15‐dihydroxy‐13‐methoxy‐14‐oxogermacra‐1(10),4‐dien‐12‐oic acid 12,6‐lactone ( 8 ), together with the three known sesquiterpenoids 4, 5 , and 10 , were isolated from the aerial parts of Siegesbeckia orientalis L. Their structures were established by spectral methods, especially 1D‐ and 2D‐NMR spectral methods.  相似文献   

9.
Two new natural taxanes were isolated from the heartwood of Taxus cuspidata. The structures were established as rel‐(2α,5α,7β,9α,10β,12α)‐7,9‐bis(acetyloxy)‐2‐(benzoyloxy)‐11,12‐epoxy‐1,5‐dihydroxy‐10‐[(hydroxyacetyl)oxy]tax‐4(20)‐en‐13‐one ( 1 ), and (2α,5α,10β,14β)‐taxa‐4(20),11‐diene‐2,5,10,14‐tetrol 2‐acetate ( 2 ) on the basis of spectroscopic analysis.  相似文献   

10.
Two new tridesmosidic glycosides of (3β,6α,16β,20R,24S)‐20,24‐epoxycycloartane‐3,6,16,25‐tetrol (=cycloastragenol), armatosides I and II ( 1 and 2 , resp.), were isolated from the roots of Astragalus armatus (Fabaceae) as well as the known bidesmosidic glycosides of cycloastragenol, trigonoside II ( 3 ) and trojanoside H ( 4 ). Their structures were elucidated as (3β,6α,16β,20R,24S)‐3‐O‐(2,3‐di‐O‐acetyl‐β‐D ‐xylopyranosyl)‐20,24‐epoxy‐25‐Oβ‐D ‐glucopyranosyl‐6‐Oβ‐D ‐xylopyranosylcycloartane‐3,6,16,25‐tetrol ( 1 ), and (3β,6α,16β,20R,24S)‐3‐O‐(2‐O‐acetyl‐β‐D ‐xylopyranosyl)‐20,24‐epoxy‐25‐Oβ‐D ‐glucopyranosyl‐6‐Oβ‐D ‐xylopyranosylcycloartane‐3,6,16,25‐tetrol ( 2 ). These structures were established by extensive NMR and MS analyses and by comparison with literature data.  相似文献   

11.
Nine new sesquiterpenes, i.e., dendronobilins A–I ( 1 – 9 ), with copacamphane‐type ( 1 ), picrotoxane‐type ( 2 – 6 ), muurolene‐type ( 7 ), alloaromadendrane‐type ( 8 ), and cyclocopacamphane‐type ( 9 ) skeletons, were isolated from the 60% EtOH extract of the stems of Dendrobium nobile. Their structures were established as (1R,2R,4S,5S,6S,8S,9R)‐2,8‐dihydroxycopacamphan‐15‐one ( 1 ), (2β,3β,4β,5β)‐2,4,11‐trihydroxypicrotoxano‐3(15)‐lactone ( 2 ), (2β,3β,5β,9α,11β)‐2,11‐epoxy‐9,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 3 ), (2β,3β,5β,12R*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 4 ), (2β,3β,5β,12S*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 5 ), (2β,3β,5β,9α)‐9,10‐cyclo‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 6 ), (9β,10α)‐muurol‐4‐ene‐9,10,11‐triol ( 7 ), (10α)‐alloaromadendrane‐10,12,14‐triol ( 8 ), and (5β)‐cyclocopacamphane‐5,12,15‐triol ( 9 ) on the basis of spectroscopic analysis. The absolute configuration of compound 1 was tentatively assigned as (1R,2R,4S,5S,6S,8S,9R) according to its CD spectrum and the octant rule. Compounds 1 and 4 – 9 were inactive in our preliminary in vitro immunomodulatory bioassay.  相似文献   

12.
Four new podocarpane‐type trinorditerpenenes, (5β,10α)‐12,13‐dihydroxypodocarpa‐8,11,13‐trien‐3‐one ( 1 ), (5β,10α)‐12‐hydroxy‐13‐methoxypodocarpa‐8,11,13‐trien‐3‐one ( 2 ), (5β,10α)‐13‐hydroxy‐12‐methoxypodocarpa‐8,11,13‐trien‐3‐one ( 3 ), and (3α,5β,10α)‐13‐methoxypodocarpa‐8,11,13‐triene‐3,12‐diol ( 4 ), together with four known diterpenes, 12‐hydroxy‐13‐methylpodocarpa‐8,11,13‐trien‐3‐one ( 5 ), spruceanol ( 6 ), ent‐3α‐hydroxypimara‐8(14),15‐dien‐12‐one ( 7 ), and ent‐3β,14α‐hydroxypimara‐7,9(11),15‐triene‐12‐one ( 8 ), were isolated from the twigs and leaves of Aleurites moluccana. Their structures were elucidated by means of comprehensive spectroscopic analyses, including NMR and MS. Except 8 , all compounds were evaluated for their cytotoxicity; compound 4 exhibited moderate inhibitory activity against Raji cells with an IC50 value of 4.24 μg/ml.  相似文献   

13.
Four new ent‐pimarane diterpenes were isolated from the EtOH extract of Aralia dumetorum, together with three known compounds involving ent‐pimar‐8(14),15‐dien‐19‐oic acid ( 5 ), ent‐pimar‐8(14),15‐dien‐19‐ol ( 6 ), and ent‐kaur‐16‐en‐19‐oic acid ( 7 ). By detailed analyses of the MS, IR, and NMR data, the structures of four new diterpenes were characterized as (5β,9β,10α,13α)‐pimara‐6,8(14),15‐trien‐18‐oic acid ( 1 ), (5β,7β,9β,10α,13α)‐7‐methoxypimara‐8(14),15‐dien‐18‐oic acid ( 2 ), (5β,9β,10α,13α,14β)‐14‐methoxypimara‐7,15‐dien‐18‐oic acid ( 3 ), and (5β,10α,13α,14α)‐14‐hydroxypimara‐7,9(11),15‐trien‐18‐oic acid ( 4 ). The cytotoxic activities of compounds 1  –  7 were assayed in vitro through MTT method.  相似文献   

14.
From the twigs of Amoora stellato‐squamosa, five new neoclerodane diterpenes have been isolated and characterized, methyl (13E)‐2‐oxoneocleroda‐3,13‐dien‐15‐oate (=methyl (2E)‐3‐methyl‐5‐[(1S,2R,4aR,8aR)‐1,2,3,4,4a,7,8,8a‐octahydro‐1,2,4a,5‐tetramethyl‐7‐oxo‐naphthalen‐1‐yl]pent‐2‐enoate; 1 ), (13E)‐2‐oxoneocleroda‐3,13‐dien‐15‐ol (=(4aR,7R,8S,8aR)‐1,2,4a,5,6,7,8,8a‐octahydro‐8‐[(E)‐5‐hydroxy‐3‐methylpent‐3‐enyl]‐4,4a,7,8‐tetramethylnaphthalen‐2(1H)‐one; 2 ), (3α,4β,13E)‐neoclerod‐13‐ene‐3,4,15‐triol (=(1R,2R,4aR, 5S,6R,8aR)‐decahydro‐5‐[(E)‐5‐hydroxy‐3‐methylpent‐3‐enyl]‐1,5,6,8a‐tetramethylnaphthalene‐1,2‐diol; 3 ), (3α,4β,13E)‐4‐ethoxyneoclerod‐13‐ene‐3,15‐diol (=(1R,2R,4aR,5S,6R,8aR)‐1‐ethoxydecahydro‐5‐[(E)‐5‐hydroxy‐3‐methylpent‐3‐enyl]‐1,5,6,8a‐tetramethylnaphthalen‐2‐ol; 4 ), and (3α,4β,14RS)‐neoclerod‐13(16)‐ ene‐3,4,14,15‐tetrol (=(1R,2R,4aR,5S,6R,8aR)‐decahydro‐5‐[3‐(1,2‐dihydroxyethyl)but‐3‐enyl]‐1,5,6,8a‐tetramethylnaphthalene‐1,2‐diol; 5 ), together with two known compounds, (13E)‐neocleroda‐3,13‐diene‐15,18‐diol ( 6 ) and (13S)‐2‐oxoneocleroda‐3,14‐dien‐13‐ol ( 7 ).  相似文献   

15.
Four new eremophilanolides, isolated from Ligularia sagitta, were identified as (1β,3β,6β,8β,10β)‐6‐acetoxy‐3‐(angeloyloxy)‐1,10‐epoxy‐8‐hydroxyeremophil‐7(11)‐en‐8,12α‐olide ( 1 ), (1β,3β,6β,8β,10β)‐3‐(angeloyloxy)‐1,10‐epoxy‐6,8‐dihydroxyeremophil‐7(11)‐en‐8,12α‐olide ( 2 ), (1β,3β,6β,8β,10β)‐3‐(angeloyloxy)‐1,10‐epoxy‐8‐ethoxy‐6‐hydroxyeremophil‐7(11)‐en‐8,12α‐olide ( 3 ), and (1β,3β,8β,10β)‐3‐(angeloyloxy)‐1,10‐epoxy‐8‐hydroxyeremophil‐7(11)‐en‐8,12α‐olide ( 4 ). Their structures were elucidated by spectroscopic methods, including 2D‐NMR techniques and chemical transformations.  相似文献   

16.
Two new withanolides, namely (20S,22R)‐15α‐acetoxy‐5α‐chloro‐6β,14β‐dihydroxy‐1‐oxowitha‐2,24‐dienolide ( 1 ) and (22R)‐5β,6β : 14α,17 : 14β,26‐triepoxy‐2α‐ethoxy‐13,20,22‐trihydroxy‐1,15‐dioxo‐16α,24‐cyclo‐13,14‐secoergosta‐18,27‐dioic acid 18→20,27→22‐dilactone ( 2 ), along with six known compounds, physagulin B ( 3 ), withangulatin A ( 4 ), physalin I ( 5 ), withaminimin ( 6 ), physagulin J ( 7 ), and ergosta‐5,25‐diene‐3β,24ξ‐diol ( 8 ), were isolated from the whole plant of Physalis alkekengi var. francheti. Their structures were elucidated on the basis of spectroscopic analyses.  相似文献   

17.
Two new compounds, (6S,13S)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,14‐dien‐13‐ol ( 1 ) and kadsuric acid 3‐methyl ester ( 2 ), together with nine known compounds, (6S,13E)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,13‐dien‐15‐ol ( 3 ), (6S,13S)‐6‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 4 ), (6S,13S)‐6‐{[6‐Oβ‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 5 ), 15‐hydroxydehydroabietic acid ( 6 ), 15‐hydroxylabd‐8(17)‐en‐19‐oic acid ( 7 ), junicedric acid ( 8 ), (4β)‐kaur‐16‐en‐18‐oic acid ( 9 ), (4β)‐16‐hydroxykauran‐18‐oic acid ( 10 ), and (4β,16β)‐16‐hydroxykauran‐18‐oic acid ( 11 ) were isolated from the fronds of Dicranopteris linearis or D. ampla. Their structures were established by extensive 1D‐ and 2D‐NMR spectroscopy. Compounds 1 and 3 – 8 showed no anti‐HIV activities.  相似文献   

18.
Three new monoterpenoid indole alkaloids, vinmajorines C–E ( 1 – 3 ), along with 18 known analogues ( 4 – 21 ), were isolated from the whole plants of Vinca major. The new structures were elucidated as (5α,15β,16R,17α,19β,20α,21β)‐10,17‐dimethoxy‐21‐methyl‐18‐oxa‐5,16‐cycloyohimban‐19‐ol ( 1 ), (5α,15β,16R,17α,20α,21β)‐10‐methoxy‐21‐methyl‐18‐oxa‐5,16‐cycloyohimban‐17‐ol ( 2 ), and (5α,15β,16R,17α,20α,21β)‐10‐methoxy‐21‐methyl‐18‐oxa‐5,16‐cycloyohimban‐17‐yl acetate ( 3 ), respectively, by extensive NMR and MS analysis and comparison with known compounds. Compounds 1 – 3 were evaluated for their cytotoxic activities against five human cancer cell lines, compounds 1 and 3 showing moderate cytotoxic activities.  相似文献   

19.
A phytochemical investigation of MeOH extract of Desmos cochinchinensis var. fulvescens Ban afforded two new compounds, 1β,7α‐dihydroxyeudesman‐4‐one ( 1 ) and 5αH‐megastigm‐7‐ene‐3α,4α,6β,9‐tetrol ( 2 ), together with nine known terpenoids. The structures of the new compounds were elucidated by 1D‐ and 2D‐NMR spectroscopic analysis. Their relative configurations were assigned by NOESY experiments.  相似文献   

20.
Two new spirostanol saponins, (1β,3β,5β,25S)‐spirostan‐1,3‐diol 1‐(β‐D ‐xylopyranoside) ( 1 ) and (1β,3β,5β,25S)‐spirostan‐1,3‐diol 1‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranoside] ( 2 ), along with two known compounds, (1β,3β,5β,25S)‐spirostan‐1,3‐diol 1‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐xylopyranoside] ( 3 ) and (1β,3β,4β,5β,25S)‐spirostan‐1,3,4,5‐tetrol 5‐(β‐D ‐glucopyranoside) ( 4 ) were isolated from the whole plant of Reineckia carnea. The structures of the new steroids were determined by detailed analysis of their 1D‐ and 2D‐NMR spectra and chemical methods, and by comparison with spectral data of known compounds. Compounds 3 and 4 were isolated from the genus Reineckia for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号