共查询到16条相似文献,搜索用时 31 毫秒
1.
Meisam Khalil Arjmandi Mohammad Pooyan Mohammad Mikaili Mansour Vali Alireza Moqarehzadeh 《Journal of voice》2011,25(6):e275
Identification of voice disorders has a fundamental role in our life nowadays. Therefore, many of these diseases must be diagnosed at early stages of occurrence before they lead to a critical condition. Acoustic analysis can be used to identify voice disorders as a complementary technique with other traditional invasive methods, such as laryngoscopy. In this article, we followed an extensive study in the diagnosis of voice disorders using the statistical pattern recognition techniques. Finally, we proposed a combined scheme of feature reduction methods followed by pattern recognition methods to classify voice disorders. Six classifiers are used to evaluate feature vectors obtained by principal component analysis or linear discriminant analysis (LDA) as feature reduction methods. Furthermore, individual, forward, backward, and branch-and-bound methods are examined as feature selection methods. The performance of each combined scheme is evaluated in terms of the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The experimental results denote that LDA along with support vector machine (SVM) has the best performance, with a recognition rate of 94.26% and AUC of 97.94%. Additionally, this structure has the lowest complexity in comparison with other architectures. Among feature selection methods, individual feature selection followed by SVM classifier shows the best recognition rate of 91.55% and AUC of 95.80%. 相似文献
2.
三七粉是三七的主要消费和商品形式,市场上存在以次充好、甚至是掺假的现象,由于是粉状物料,难以用肉眼判别,为了实现对不同质量等级的三七粉进行无损鉴别。将30头、40头、60头和80头的三七主根研磨成粉,制备样本。采用可见近红外高光谱成像系统(400.68~1 001.61 nm)采集4种不同头数三七粉,共计384个样品的高光谱图像,提取高光谱图像感兴趣区域(ROI)的平均光谱值作为样本原始光谱。将384个三七粉样本按2∶1的比例划分训练集和测试集。采用卷积平滑(SG)、多元散射校正(MSC)和标准正态变量变换(SNV)3种预处理方法对三七粉样本光谱信息进行预处理并建立支持向量机(SVM)分类模型,通过比较基于3种预处理方法的SVM模型测试集分类准确率,确定SNV为最优预处理方法。采用迭代保留信息变量(IRIV)、变量组合集群分析(VCPA)和变量组合集群分析混合迭代保留信息变量(VCPA-IRIV)3种特征选择方法提取SNV预处理后光谱的特征波长并建立基于特征光谱和原始光谱的SVM分类模型,通过比较基于3种特征选择方法得到的特征波长建立的SVM模型测试集分类准确率,发现将VCPA与IRIV相结合的VCPA-IRIV为最优特征选择方法。VCPA-IRIV提取了18个特征波长代替全光谱数据参与建模,该算法在降低模型复杂度的同时保持了模型的分类精度。为了提高模型的分类精度,采用引力搜索算法(GSA)对SVM模型中惩罚因子c和核参数g进行寻优,并与网格搜索(GS)的结果进行比较,结果表明,VCPA-IRIV-GSA-SVM模型分类效果最好,测试集分类准确率达到100%。可见,利用可见近红外高光谱成像对三七粉进行质量等级无损鉴别是可行的,为市场上三七粉的质量等级鉴别提供了参考。 相似文献
3.
4.
5.
兔肝VX2肿瘤是一种快速生长的肿瘤模型,可以在多种器官如肝、肺、直肠等快速生长,常用于肿瘤研究.采用可见-近红外高光谱技术对四只兔子的兔肝VX2肿瘤和正常组织进行活体和离体的反射光谱检测,然后采用支持向量机分别实现了二分类(正常肝组织和肝VX2肿瘤组织)和四分类(未出血活体正常肝组织、未出血活体VX2肿瘤组织、出血离体... 相似文献
6.
Hui Zhang Ming-Li Xiang Chang-Ying Ma Qi Huang Wei Li Yang Xie Yu-Quan Wei Sheng-Yong Yang 《Molecular diversity》2009,13(2):261-268
In this investigation, three-class classification models of aqueous solubility (logS) and lipophilicity (logP) have been developed
by using a support vector machine (SVM) method combined with a genetic algorithm (GA) for feature selection and a conjugate
gradient method (CG) for parameter optimization. A 5-fold cross-validation and an independent test set method were used to
evaluate the SVM classification models. For logS, the overall prediction accuracy is 87.1% for training set and 90.0% for
test set. For logP, the overall prediction accuracy is 81.0% for training set and 82.0% for test set. In general, for both
logS and logP, the prediction accuracies of three-class models are slightly lower by several percent than those of two-class
models. A comparison between the performance of GA–CG–SVM models and that of GA–SVM models shows that the SVM parameter optimization
has a significant impact on the quality of SVM classification model.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Hui Zhang and Ming-Li Xiang are contributed equally. 相似文献
7.
基于克隆选择支持向量机高光谱遥感影像分类技术 总被引:2,自引:0,他引:2
作为支持向量机(support vector machine, SVM)高光谱影像分类的一个重要环节,参数设置的效率和精度直接影响到SVM模型训练效率和最终分类精度。本文首先建立一个SVM高光谱影像分类器,提出了利用免疫克隆选择算法优化的交叉验证进行核函数参数和惩罚因子C的优化选择的方法,得到了一种基于克隆选择优化的支持向量机(clonal selection SVM, CSSVM)高光谱影像分类器。然后将CSSVM与传统的基于网格搜索交叉验证的支持向量机(gird search SVM, GSSVM)分类器进行了对比评价,评价指标包括模型训练时间和分类精度等。最后基于AVIRIS高光谱遥感影像进行了两算法分类对比试验,结果表明:提出的CSSVM测试样本总分类精度超过85.1%和Kappa系数超过0.821 3,影像总分类精度超过81.58%和Kappa系数超过0.772 8,CSSVM与GSSVM的分类精度差别在0.08%以内,Kappa系数差别在0.001以内;CSSVM的模型训练时间是GSSVM的1/6至1/10,得到显著缩短;CSSVM方法在保持传统GSSVM优良分类精度的基础上,极大提高了模型的训练效率。 相似文献
8.
Suely Master Noemi De Biase Brasília Maria Chiari Anne-Maria Laukkanen 《Journal of voice》2008,22(2):146-154
SUMMARY: This study investigates the possible differences between actors' and nonactors' vocal projection strategies using acoustic and perceptual analyses. A total of 11 male actors and 10 male nonactors volunteered as subjects, reading an extended text sample in habitual, moderate, and loud levels. The samples were analyzed for sound pressure level (SPL), alpha ratio (difference between the average SPL of the 1-5kHz region and the average SPL of the 50Hz-1kHz region), fundamental frequency (F0), and long-term average spectrum (LTAS). Through LTAS, the mean frequency of the first formant (F1) range, the mean frequency of the "actor's formant," the level differences between the F1 frequency region and the F0 region (L1-L0), and the level differences between the strongest peak at 0-1kHz and that at 3-4kHz were measured. Eight voice specialists evaluated perceptually the degree of projection, loudness, and tension in the samples. The actors had a greater alpha ratio, stronger level of the "actor's formant" range, and a higher degree of perceived projection and loudness in all loudness levels. SPL, however, did not differ significantly between the actors and nonactors, and no differences were found in the mean formant frequencies ranges. The alpha ratio and the relative level of the "actor's formant" range seemed to be related to the degree of perceived loudness. From the physiological point of view, a more favorable glottal setting, providing a higher glottal closing speed, may be characteristic of these actors' projected voices. So, the projected voices, in this group of actors, were more related to the glottic source than to the resonance of the vocal tract. 相似文献
9.
针对红外光谱气体分析中建立数据模型需要标定大量样本的问题, 提出一种基于正则理论的支持向量机的小样本机器学习方法,该方法能在获得模型参数全局最优点的同时保证训练误差为零,因而能较好地消除光谱间的交叉敏感现象,利用其良好的非线性映射能力对多组分红外光谱仪的试验结果表明,该方法可使光谱仪的交叉灵敏度下降约81倍。针对支持向量机(SVM)没有足够的理论支持的结构参数选取比较困难的问题,提出一种基于遗传算法和交叉检验相结合的遗传支持向量机(GA_SVM)算法,利用遗传算法的随机搜索特性求取SVM的最优结构参数,在20世代即可求取光谱仪的最小均方根误差(MSE)0.018, 并且在算法的前数世代,系统的MSE即已开始成倍下降。这些结果表明GA_SVM光谱仪具有更高的效率和泛华能力。 相似文献
10.
利用光谱检测和数据挖掘实现不同种类动物血液光谱数据的精确识别与分类具有重要意义,目前尚未见到较为完善及普适的相关研究报道。实验采集了鸽、鸡、鼠、羊四种动物全血和红细胞溶液(浓度为1%)的荧光光谱数据;基于小波变换的软阈值去噪方法,首先对原始光谱数据进行去噪处理,并确定了717个原始特征(包括荧光峰强度值、荧光峰连线斜率等4类特征);提出以“区分度统计量”为核心的特征提取方法,结合主成分分析法和平均影响值算法,实现了对717个原始特征到2个识别特征的高效筛选;进一步建立了径向基核函数的支持向量机分类器,对四类不同动物的全血荧光光谱数据实现了准确率为100%的识别分类,对红细胞荧光光谱数据实现了94.69%~99.12%的识别率;最后蒙特卡洛交叉验证的结果表明所提出的思路和方法对于动物全血溶液的识别分类具有较好的泛化能力,能对荧光光谱数据进行准确的识别分类,因此能够在进出口检查、食品安全、医药等领域发挥重要作用。针对动物血液荧光光谱,提出的基于“区分度统计量”的特征提取方法,相比于传统的人为特征选取方法,能够从大量原始特征中自动提取少量且有效的识别特征,具有较强的普适性和高效性,为其他领域的光谱特征提取和识别分类提供了一种新的思路。 相似文献
11.
石油污染的出现,导致生态环境遭到破坏。因此,油类识别方法的研究对于环境的保护具有重要意义。采用荧光光谱法获得石油光谱数据,并对其进行预处理,再通过降维方法来提取特征信息,最后利用模式识别算法进行分类,从而可以实现对油类的定性分析,因此研究一种更高效的数据降维方法以及识别分类算法极其重要。基于三维荧光光谱技术,利用稀疏主成分分析(SPCA)对FS920光谱仪测得的荧光光谱数据进行特征提取,再利用支持向量机(SVM)算法对提取的特征数据进行分类识别,获得了一种更加高效的油类识别方法。首先,利用海水和十二烷基硫酸钠(SDS)配制成浓度为0.1 mol·L-1的胶束溶液,将其作为溶剂配制柴油、航空煤油、汽油以及润滑油各20种不同浓度的溶液;然后,利用FS920光谱仪测得样本溶液的三维荧光光谱数据,对得到的光谱数据进行预处理;最后,对预处理后的数据分别利用SPCA和主成分分析(PCA)进行特征提取,再利用SVM和K最近邻(KNN)两种模式识别算法对特征向量进行分类,最终得到四种模型PCA-KNN,SPCA-KNN,PCA-SVM以及SPCA-SVM的分类结果。研究结果表明,由四种模型得到的分类准确率分别为85%,90%,90%和95%,其中,在同种分类算法中,利用SPCA进行特征提取得到的分类准确率均比PCA的准确率高5%,因此可知,SPCA的稀疏性具有突出主要成分的作用,在提取光谱特征时能够减小非必要成分的影响,并且载荷矩阵的稀疏化可以去除变量之间的冗余信息,优化降维特征信息,为后续分类提供更有效的数据特征信息;在同种特征提取算法下,利用SVM算法进行分类得到的分类准确率均比KNN算法得到的准确率高5%,表明SVM算法在分类中更具有优势。因此,本文利用三维荧光光谱技术结合SPCA和SVM算法,实现了对石油的准确识别与分类,为今后对石油污染物的高效检测提供了新思路。 相似文献
12.
《Physics letters. A》2020,384(25):126590
Quantum algorithms can enhance machine learning in different aspects. Here, we study quantum-enhanced least-square support vector machine (LS-SVM). Firstly, a novel quantum algorithm that uses continuous variable to assist matrix inversion is introduced to simplify the algorithm for quantum LS-SVM, while retaining exponential speed-up. Secondly, we propose a hybrid quantum-classical version for sparse solutions of LS-SVM. By encoding a large dataset into a quantum state, a much smaller transformed dataset can be extracted using quantum matrix toolbox, which is further processed in classical SVM. We also incorporate kernel methods into the above quantum algorithms, which uses both exponential growth Hilbert space of qubits and infinite dimensionality of continuous variable for quantum feature maps. The quantum LS-SVM exploits quantum properties to explore important themes for SVM such as sparsity and kernel methods, and stresses its quantum advantages ranging from speed-up to the potential capacity to solve classically difficult machine learning tasks. 相似文献
13.
基于主成分分析和支持向量机的木材近红外光谱树种识别研究 总被引:3,自引:0,他引:3
为了探究一种新型高效的树种鉴别方法,以桉木、杉木、落叶松、马尾松和樟子松近红外光谱数据为研究对象,分别建立了基于主成分分析和支持向量机的木材树种定性识别模型。在主成分识别模型中,样本光谱数据经过预处理后绘制了其二维和三维主成分得分图,可以看出:主成分分析得分图能有效区分五种木材树种,且三维得分图比二维得分图更能直观、清晰展示树种之间的差异,表明主成分分析在可视化层面上可对小样本树种进行有效判别。在支持向量机识别模型中,分别建立了以遗传算法和粒子群算法为代表的智能算法优化支持向量机树种识别模型,结果显示,遗传算法-支持向量机模型的交叉验证最佳判别准确率为95.71%,测试集预测准确率为94.29%,算法用时134.08 s;粒子群算法-支持向量机模型的交叉验证最佳判别准确率为94.29%,测试集预测准确率为100.00%,算法用时19.98 s,表明基于智能算法支持向量机树种识别模型能够实现对木材树种的有效鉴别。该研究对近红外光谱分析技术在木材科学领域的应用进行了有益探索,为木材树种的快速识别提供了新方法。 相似文献
14.
变量选择是光谱分析领域一个重要的组成部分。为了克服传统区间选择法的缺点与不足,基于无信息变量消除法和岭极限学习机提出一种新型的变量选择与评价方法。首先,利用无信息变量消除法剔除整个光谱区间中无信息的波长点;其次,为了解决传统建模方法(偏最小二乘法、BP神经网络等)存在的共线性问题,采用岭极限学习机方法建立回归模型;最后,最佳的特征光谱波长点组合利用特征选择路径图和稀疏度-误差折中曲线进行确定。CO气体的浓度反演实验结果表明:(1)利用无信息变量消除法可以有效筛选出最能表征CO气体透过光谱的特征波长点;(2)岭极限学习机方法具有快速建模、避免共线性和高精度等优点(CO气体浓度反演模型的决定系数可达0.995);(3)特征选择路径图和稀疏度-误差折中曲线可以直观地帮助用户寻找出最佳的特征波长点组合。 相似文献
15.
单一特征识别的钨矿石初选准确率低,稳定性差,本文提出结合模糊支持向量机和D-S证据理论相的多特征钨矿石识别方法.对矿石图像预处理后,分别提取矿石的颜色、灰度和纹理等3类视觉特征,对这3类视觉特征进行模糊分类得到各自的信任度,再以这3类信任度为独立证据,采用D-S证据理论对3类证据进行融合,并依据分类判决规则得到最终的识别结果.试验结果表明,通过D-S理论对模糊向量机证据的融合,钨矿石初选的正确识别率达到96%以上,其准确率和稳定性较单一特征均有大幅度提高,满足生产过程中初选工艺的要求. 相似文献
16.
The squeak and rattle (S&R) noise of a vehicle’s suspension shock absorber substantially influences the psychological and physiological perception of passengers. In this paper, a state-of-the-art method, specifically, a genetic algorithm-optimized support vector machine (GA-SVM), which can select the most effective feature subsets and optimize the model’s free parameters, is proposed to identify this specific noise. A vehicular road test and a shock absorber rig test are conducted to investigate the relationship between these features, and then an approach for quantifying the shock absorber S&R noise is given. Pre-processed signals are decomposed through a wavelet packet transform (WPT), and two criteria, namely, the wavelet packet energy (WPE) and wavelet packet sample entropy (WPSE), are introduced as the feature extraction methods. Then, the two extracted feature sets are compared based on this genetic algorithm. Another advanced method, known as the genetic algorithm-optimized back propagation neural network (GA-BPNN), is introduced for comparison to illustrate the superiority of the newly developed GA-SVM model. The result shows that the WPSE can extract more useful features than the WPE and that the GA-SVM is more effective and efficient than the GA-BPNN. The proposed approach could be retrained and extended to address other fault identification problems. 相似文献