首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We show that the successful and formally exact multiconfigurational time-dependent Hartree method (MCTDH) takes on a unified and compact form when specified for systems of identical particles (MCTDHF for fermions MCTDHB for bosons). In particular the equations of motion for the orbitals depend explicitly and solely on the reduced one- and two-body density matrices of the system's many-particle wave function. We point out that this appealing representation of the equations of motion opens up further possibilities for approximate propagation schemes.  相似文献   

2.
Benchmark calculations of the tunneling splitting in malonaldehyde using the full dimensional potential proposed by Yagi et al. are reported. Two exact quantum dynamics methods are used: the multiconfigurational time-dependent Hartree (MCTDH) approach and the diffusion Monte Carlo based projection operator imaginary time spectral evolution (POITSE) method. A ground state tunneling splitting of 25.7+/-0.3 cm(-1) is calculated using POITSE. The MCTDH computation yields 25 cm(-1) converged to about 10% accuracy. These rigorous results are used to evaluate the accuracy of approximate dynamical approaches, e.g., the instanton theory.  相似文献   

3.
Grid-based schemes for simulating quantum dynamics, such as the multi-configuration time-dependent Hartree (MCTDH) method, provide highly accurate predictions of the coupled nuclear and electronic dynamics in molecular systems. Such approaches provide a multi-dimensional, time-dependent view of the system wavefunction represented on a coordinate grid; in the case of non-adiabatic simulations, additional information about the state populations adds a further layer of complexity. As such, wavepacket motion on potential energy surfaces which couple many nuclear and electronic degrees-of-freedom can be extremely challenging to analyse in order to extract physical insight beyond the usual expectation-value picture. Here, we show that non-linear dimensionality reduction (NLDR) methods, notably diffusion maps, can be adapted to extract information from grid-based wavefunction dynamics simulations, providing insight into key nuclear motions which explain the observed dynamics. This approach is demonstrated for 2-D and 9-D models of proton transfer in salicylaldimine, as well as 8-D and full 12-D simulations of cis-trans isomerization in ethene; these simulations demonstrate how NLDR can provide alternative views of wavefunction dynamics, and also highlight future developments.  相似文献   

4.
5.
The 3D cumulative isomerization probability N(E) for the transfer of a light particle between two atoms is computed by one time-independent and two time-dependent versions of the transition state wave packet (TSWP) method. The time-independent method is based on the direct expansion of the microcanonical projection operator on Chebyshev polynomials. In the time-dependent TSWP methods, the propagations are carried out by the split operator scheme and the multiconfiguration time-dependent Hartree (MCTDH) algorithm. This is the very first implementation of the TSWP method in the Heidelberg MCTDH package [G. W. Worth, M. H. Beck, A. Jackle, and H.-D. Meyer, The MCDTH package, Version 8.2 (2000); H.-D Meyer, Version 8.3 (2002). See http://www.pci.uni-heidelberg.de/tc/usr/mctdh/]. The benchmark is the HCN-->CNH isomerization for zero total angular momentum. Particular insights are given into the tunneling region. In larger systems, the time-dependent version of TSWP making use of the MCTDH algorithm will permit to treat more and more modes quantum mechanically, for very accurate results. Therefore, it was important to calibrate the implementation. Besides, we also assess the efficiency of a reduced dimensionality approach by comparing the new exact 3D calculations of N(E) for the HCN-->CNH isomerization with results obtained via 1D or 2D active subspaces. This suggests that, it should be possible to take directly benefit of the present 3D approaches, adapted for triatomic Jacobi coordinates to compute N(E) for H-transfer in larger systems, via three active coordinates. The prerequisite is then the simplification of the reduced 3D kinetic energy operator with rigid constraint to take the form corresponding to a pseudo triatomic system in Jacobi coordinates with effective masses. This last step is checked in the methoxy radical and malonaldehyde. Finally, different ways to obtain reliable eigenvectors of the flux operator associated with a dividing surface are revisited.  相似文献   

6.
The excited-state intramolecular proton-transfer dynamics associated with the keto-enolic tautomerization reaction in 2-(2(')-hydroxyphenyl)-oxazole is simulated according to a numerically exact quantum-dynamics propagation method and a full-dimensional excited-state potential energy surface, based on an ab initio reaction surface Hamiltonian. The reported simulations involve the propagation of 35-dimensional wave packets according to the recently developed matching-pursuit/split-operator-Fourier-transform (MP/SOFT) method by Wu and Batista. The underlying propagation scheme recursively applies the time-evolution operator as defined by the Trotter expansion to second order accuracy in dynamically adaptive coherent-state expansions. Computations of time-dependent survival amplitudes, photoabsorption cross sections, and time-dependent reactant(product) populations are compared to the corresponding calculations based on semiclassical approaches, including the Herman-Kluk semiclassical initial value representation method. The reported results demonstrate the capabilities of the MP/SOFT method as a valuble computational tool to study ultrafast reaction dynamics in polyatomic systems as well as to validate semiclassical simulations of complex (nonintegrable) quantum dynamics in multidimensional model systems.  相似文献   

7.
An efficient and robust integration scheme tailored to the equations of motion of the multiconfiguration time-dependent Hartree (MCTDH) method is presented. An error estimation allows the automatical adjustment of the step size and hence controls the integration error. The integration scheme decouples the MCTDH equations of motion into several disjoined subsystems, of which one determines the time evolution of the MCTDH-coefficients. While the conventional MCTDH equations are non-linear, the working equation for the MCTDH-coefficients becomes linear in the present integration scheme. To investigate the integrator’s performance it is applied to the photodissociation process of methyl iodide. The results of the novel integration scheme are in perfect agreement to those obtained by solving the MCTDH working equations conventionally. The computation time, however, is reduced by a factor of about ten when the new integration scheme is used to propagate large systems.  相似文献   

8.
The efficiency of the multiconfigurational time-dependent Hartree (MCTDH) method for calculating the initial-state selected dissociation probability of H(2)(v=0,j=0) on Cu(100) is investigated. The MCTDH method is shown to be significantly more efficient than standard wave packet methods. A large number of single-particle functions is required to converge the initial-state selected reaction probability for dissociative adsorption. Employing multidimensional coordinates in the MCTDH ansatz (mode combination) is found to be crucial for the efficiency of these MCTDH calculations. Perspectives towards the application of the MCTDH approach to study dissociative adsorption of polyatomic molecules on surfaces are discussed.  相似文献   

9.
We have extended a previously implemented algorithm for using optimal control theory within the multi-configurational time-dependent Hartree (MCTDH) software. The new implementation allows the use of arbitrary dipole operators for generating the optimal laser field. A variant that does not require saving the time-dependent wave function has been developed, where simultaneous forward and backward propagations are performed. Input parameters are concentrated in a single input file analogous to the input files used elsewhere in MCTDH. We use here two simple examples to demonstrate the use of OCT-MCTDH: the modified Henon-Heiles potential and a two-dimensional model of acetylene. For both systems, a controlled transition between two vibrational states is tested. Results obtained with MCTDH and exact calculations are compared.  相似文献   

10.
The semiclassical wave packet dynamics method of Heller is extended to provide a formally exact theory of quantum mechanical motion for multidimensional anharmonic systems by introducing a complete, orthonormal, time-dependent basis of generalized oscillator functions. The exact wavefunction is expressed in terms of this basis and the expansions are shown to develop according to linear, coupled first-order differential equations. Application to collinear inelastic atom-diatomic molecule scattering demonstrates the feasibility and convergence of the new method.  相似文献   

11.
We present an ℒ︁2 method aimed at directly computing autocorrelation functions 〈Φ0t〉 for systems displaying long time recurrences. By making use of a Lanczos scheme, as previously proposed by Wyatt [Chem. Phys. Lett. 121, 301 (1985)], the method avoids explicit time propagation of the wavefunction. The problem associated with spurious recurrences, due to the finite size of the ℒ︁2-box, is solved in terms of an optical potential located in the asymptotic region. The resulting complex representation of the Hamiltonian operator is handled by a complex symmetric Lanczos scheme, which retains the same basic advantages as its real version. The method is illustrated on the ozone photodissociation process which displays a very detailed recurrence structure over a long time period. It is shown that such a direct calculation of the correlation function is about one order of magnitude faster than an actual wavepacket propagation. The accuracy of the method is assessed by comparison to calculations performed without any optical potential but using a very large box size along the dissociation coordinate. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 317–328, 1998  相似文献   

12.
A justification is given for the use of non-spreading or frozen gaussian packets in dynamics calculations. In this work an initial wavefunction or quantum density operator is expanded in a complete set of grussian wavepackets. It is demonstrated that the time evolution of this wavepacket expansion for the quantum wavefunction or density is correctly given within the approximations employed by the classical propagation of the avarage position and momentum of each gaussian packet, holding the shape of these individual gaussians fixed. The semiclassical approximation is employed for the quantum propagator and the stationary phase approximation for certain integrals is utilized in this derivation. This analysis demonstrates that the divergence of the classical trajectories associated with the individual gaussian packets accounts for the changes in shape of the quantum wavefunction or density, as has been suggested on intuitive grounds by Heller. The method should be exact for quadratic potentials and this is verified by explicitly applying it for the harmonic oscillator example.  相似文献   

13.
In the multiconfiguration time-dependent Hartree (MCTDH) approach, the wave function is expanded in time-dependent basis functions, called single-particle functions, to increase the efficiency of the wave-packet propagation. The correlation discrete variable representation (CDVR) approach, which is based on a time-dependent discrete variable representation (DVR), can be employed to evaluate matrix elements of the potential energy. The efficiency of the MCTDH method can be further enhanced by using multidimensional single-particle functions. However, up to now the CDVR approach could not be used in MCTDH calculations employing multidimensional single-particle functions, since this would require a general multidimensional non-direct-product DVR scheme. Recently, Dawes and Carrington presented a practical scheme to implement general non-direct-product multidimensional DVRs [R. Dawes and T. Carrington, Jr., J. Chem. Phys. 121, 726 (2004)]. The present work utilizes their scheme in the MCTDH/CDVR approach. The accuracy is tested using the photodissociation of NOCl as example. The results show that the CDVR scheme based on multidimensional time-dependent DVRs allows for an accurate evaluation of the potential in MCTDH calculations with multidimensional single-particle functions.  相似文献   

14.
In a previous publication [J. Chem. Phys. 118, 9911 (2003)], the derivative propagation method (DPM) was introduced as a novel numerical scheme for solving the quantum hydrodynamic equations of motion (QHEM) and computing the time evolution of quantum mechanical wave packets. These equations are a set of coupled, nonlinear partial differential equations governing the time evolution of the real-valued functions C and S in the complex action, S=C(r,t) + iS(r,t)/Planck's over 2pi, where Psi(r,t)=exp(S). Past numerical solutions to the QHEM were obtained via ensemble trajectory propagation, where the required first- and second-order spatial derivatives were evaluated using fitting techniques such as moving least squares. In the DPM, however, equations of motion are developed for the derivatives themselves, and a truncated set of these are integrated along quantum trajectories concurrently with the original QHEM equations for C and S. Using the DPM quantum effects can be included at various orders of approximation; no spatial fitting is involved; there is no basis set expansion; and single, uncoupled quantum trajectories can be propagated (in parallel) rather than in correlated ensembles. In this study, the DPM is extended from previous one-dimensional (1D) results to calculate transmission probabilities for 2D and 3D wave packet evolution on coupled Eckart barrier/harmonic oscillator surfaces. In the 2D problem, the DPM results are compared to standard numerical integration of the time-dependent Schrodinger equation. Also in this study, the practicality of implementing the DPM for systems with many more degrees of freedom is discussed.  相似文献   

15.
The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method is discussed and a fully general implementation for any number of layers based on the recursive ML-MCTDH algorithm given by Manthe [J. Chem. Phys. 128, 164116 (2008)] is presented. The method is applied first to a generalized Henon-Heiles (HH) hamiltonian. For 6D HH the overhead of ML-MCTDH makes the method slower than MCTDH, but for 18D HH ML-MCTDH starts to be competitive. We report as well 1458D simulations of the HH hamiltonian using a seven-layer scheme. The photoabsorption spectrum of pyrazine computed with the 24D hamiltonian of Raab et al. [J. Chem. Phys. 110, 936 (1999)] provides a realistic molecular test case for the method. Quick and small ML-MCTDH calculations needing a fraction of the time and resources of reference MCTDH calculations provide already spectra with all the correct features. Accepting slightly larger deviations, the calculation can be accelerated to take only 7 min. When pushing the method toward convergence, results of similar quality than the best available MCTDH benchmark, which is based on a wavepacket with 4.6×10(7)time-dependent coefficients, are obtained with a much more compact wavefunction consisting of only 4.5×10(5) coefficients and requiring a shorter computation time.  相似文献   

16.
We analyze a number of fundamental questions associated with the use of a finite one-particle orbital basis in equations of motion (EOM) method calculations of excitation energies etc., of atomic and molecular systems. This approximation yields an approximate ne-electron ground state and say, N excited states, while there are (N + 1)2 different possible basis operators for EOM calculations. We show that sets of at most 2N basis operators can contribute to the EOM calculations. Any set of 2N basis operators, satisfying certain conditions, provides the exact EOM energies which are equivalent to complete configuration interaction results within the same orbital basis. We investigate the use of particle-particle shifting operators which are not employed in EOM calculations in model calculations on He with operator bases smaller than the complete 2V to consider the convergence of the expansion. The dependence of EOM calculations on the quality of the approximate ground state wavefunction is studied through calculations for Be where additional support is provided for the frequent need for multiconfigurational zeroth order reference functions (as corrected perturbatively). Excited state EOM wavefunctions from EOM calculations are shown to not necessarily be orthogonal to either the exact or approximate ground state wavefunction, suggesting implications in the use of EOM methods to evaluate excited state properties. The He and Be examples and a simple two-level problem are also utilized to illustrate questions concerning the use of the EOM equations to obtain an iteratively improved ground state wavefunction.  相似文献   

17.
An iterative block Lanczos-type diagonalization scheme utilizing the state-averaged multi-configurational time-dependent Hartree (MCTDH) approach is introduced. Combining propagation in real and imaginary time and using a set of initial seed wavefunctions corresponding to excitations via the different components of the dipole moment vector, the scheme can favorably be used to selectively compute vibrational states which show high intensities in vibrational absorption spectra. Tunneling splitted vibrational states in double well systems can be described particularly efficient employing an increased set of seed wavefunctions which includes symmetric and anti-symmetric wavefunctions simultaneously. The new approach is used to study the tunneling splittings of the vibrationally excited states of malonaldehyde. Full-dimensional multi-layer MCTDH calculations are performed and results for the tunneling splittings of several excited vibrational states can be obtained. The calculated tunneling splittings agree reasonably well with available experimental data. Order of magnitude differences between tunneling splittings of different vibrationally excited states are found and interpreted.  相似文献   

18.
A rigorous and efficient approach for the calculation of eigenstates in polyatomic molecular systems with potentials displaying multiple wells is introduced. The scheme is based on the multi-configurational time-dependent Hartree (MCTDH) approach and uses multiple MCTDH wavefunctions with different single-particle function bases to describe the quantum dynamics in the different potential wells. More specifically, an iterative block Lanczos-type diagonalization scheme utilizing state-averaged MCTDH wavefunctions localized in different wells is employed to obtain the energy eigenvalues and eigenstates. The approach does not impose any formal restriction on the symmetry of the potential or the number of wells. A seven-dimensional model system of tetrahedral symmetry, which is inspired by A·CH(4) type complexes and displays four equivalent potential minima, is used to study the numerical performance of the new approach. It is found that the number of configurations in the MCTDH wavefunctions required to obtain converged results is decreased by roughly one order of magnitude compared to standard MCTDH calculations employing a block-relaxation scheme.  相似文献   

19.
The dynamics of quantum systems can be approximated by the time propagation of Gaussian wave packets. Applying a time dependent variational principle, the time evolution of the parameters of the coupled Gaussian wave packets can be calculated from a set of ordinary differential equations. Unfortunately, the set of equations is ill behaved in most practical applications, depending on the number of propagated Gaussian wave packets, and methods for regularization are needed. We present a general method for regularization based on applying adequate nonholonomic inequality constraints to the evolution of the parameters, keeping the equations of motion well behaved. The power of the method is demonstrated for a nonintegrable system with two degrees of freedom.  相似文献   

20.
Rovibrational eigenenergies of HONO are computed and compared to experimental energies available in the literature. For their computation, we use a previously developed potential energy surface (PES) and a newly derived exact kinetic energy operator (KEO) including the overall rotation for a tetra-atomic molecule in non-orthogonal coordinates. In addition, we use the Heidelberg Multi-Configuration Time-Dependent Hartree (MCTDH) package. We compare the experimental rovibrational eigenvalues of HONO available in the literature with those obtained with MCTDH and a previously developed potential energy surface (PES) [F. Richter et al., J. Chem. Phys., 2004, 120, 1306.] for the cis geometry. The effect of the overall rotation on the process studied in our previous work on HONO [F. Richter et al., J. Chem. Phys., 2007, 127, 164315.] leading to the cis→trans isomerization of HONO is investigated. This effect on this process is found to be weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号