首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have formulated and implemented an internally contracted multireference coupled cluster (ic-MRCC) approach aimed at solving two of the problems encountered in methods based on the Jeziorski-Monkhorst ansatz: (i) the scaling of the computational and memory costs with respect to the number of references, and (ii) the lack of invariance of the energy with respect to rotations among active orbitals. The ic-MRCC approach is based on a straightforward generalization of the single-reference coupled cluster ansatz in which an exponential operator is applied to a multiconfigurational wave function. The ic-MRCC method truncated to single and double excitations (ic-MRCCSD) yields very accurate potential energy curves in benchmark computations on the Be + H(2) insertion reaction, the dissociation of hydrogen fluoride, and the symmetric double dissociation of water. Approximations of the ic-MRCC theory in which the Baker-Campbell-Hausdorff expansion is truncated up to a given number of commutators are found to converge quickly to the full theory. In our tests, two commutators are sufficient to recover a total energy within 0.5 mE(h) of the full ic-MRCCSD method along the entire potential energy curve. A formal analysis shows that the ic-MRCC method is invariant with respect to rotation among active orbitals, and that the orthogonalization procedure used to produce the set of linearly independent excitation operators plays a crucial role in guaranteeing the invariance properties. The orbital invariance was confirmed in numerical tests. Moreover, approximated versions of the ic-MRCC theory based on a truncated Baker-Campbell-Hausdorff expansion, preserve the orbital invariance properties of the full theory.  相似文献   

2.
Internally contracted multireference coupled cluster (ic-MRCC) methods with perturbative treatment of triple excitations are formulated based on Dyall's definition of a zeroth-order Hamiltonian. The iterative models ic-MRCCSDT-1, ic-MRCC3, and their variants ic-MRCCSD(T), ic-MRCC(3) which determine the energy correction from triples by a non-iterative step are consistent in the single-reference limit with CCSDT-1a, CC3, CCSD(T), and CC(3), respectively. Numerical tests on the potential energy surfaces of BeH(2), H(2)O, and N(2) as well as on the structure and harmonic vibrational frequencies of the ozone molecule show that these methods account very well for higher order correlation effects. The ic-MRCCSD(T) method is further applied to the geometry optimization and harmonic frequencies of the symmetric vibrational modes of the binuclear transition metal oxide Ni(2)O(2), to the singlet-triplet splittings of o-, m-, and p-benzyne and to a ring-opening reaction of an azirine compound with the molecular formula C(6)H(7)NO. The size of the active spaces used in this study ranges from CAS(2,2) to CAS(8,8). Comparisons of results based on differently sized active spaces indicate that the ic-MRCCSD(T) method provides a highly accurate and efficient treatment of both static and dynamic electron correlation in connection with minimal active spaces.  相似文献   

3.
A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo?ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.  相似文献   

4.
5.
We report a general implementation of alternative formulations of single-reference coupled cluster theory (extended, unitary, and variational) with arbitrary-order truncation of the cluster operator. These methods are applied to compute the energy of Ne and the equilibrium properties of HF and C(2). Potential energy curves for the dissociation of HF and the BeH(2) model computed with the extended, variational, and unitary coupled cluster approaches are compared to those obtained from the multireference coupled cluster approach of Mukherjee et al. [J. Chem. Phys. 110, 6171 (1999)] and the internally contracted multireference coupled cluster approach [F. A. Evangelista and J. Gauss, J. Chem. Phys. 134, 114102 (2011)]. In the case of Ne, HF, and C(2), the alternative coupled cluster approaches yield almost identical bond length, harmonic vibrational frequency, and anharmonic constant, which are more accurate than those from traditional coupled cluster theory. For potential energy curves, the alternative coupled cluster methods are found to be more accurate than traditional coupled cluster theory, but are three to ten times less accurate than multireference coupled cluster approaches. The most challenging benchmark, the BeH(2) model, highlights the strong dependence of the alternative coupled cluster theories on the choice of the Fermi vacuum. When evaluated by the accuracy to cost ratio, the alternative coupled cluster methods are not competitive with respect to traditional CC theory, in other words, the simplest theory is found to be the most effective one.  相似文献   

6.
Internally contracted state-specific multireference (MR) algorithms, either perturbative such as CASPT2 or NEVPT2, or nonperturbative such as contracted MR configuration interaction or MR coupled cluster, are computationally efficient but they may suffer from the internal contraction of the wave function in the reference space. The use of a low dimensional multistate model space only offers limited flexibility and is not always practicable. The present paper suggests a convenient state-specific procedure to decontract the reference part of the wave function from a series of state-specific calculations using slightly perturbed zero-order wave functions. The method provides an orthogonal valence bond reading of the ground state and an effective valence Hamiltonian, the excited roots of which are shown to be relevant. The orthogonal valence bond functions can be considered quasidiabatic states and the effective valence Hamiltonian gives therefore the quasidiabatic energies and the electronic coupling among the quasidiabatic states. The efficiency of the method is illustrated in two case problems where the dynamical correlation plays a crucial role, namely, the LiF neutral/ionic avoided crossing and the F(2) ground state wave function.  相似文献   

7.
For the first time high-order excitations (n>2) have been studied in three multireference couple cluster (MRCC) theories built on the wave operator formalism: (1) the state-universal (SU) method of Jeziorski and Monkhorst (JM) (2) the state-specific Brillouin-Wigner (BW) coupled cluster method, and (3) the state-specific MRCC approach of Mukherjee (Mk). For the H4, P4, BeH(2), and H8 models, multireference coupled cluster wave functions, with complete excitations ranging from doubles to hextuples, have been computed with a new arbitrary-order string-based code. Comparison is then made to corresponding single-reference coupled cluster and full configuration interaction (FCI) results. For the ground states the BW and Mk methods are found, in general, to provide more accurate results than the SU approach at all levels of truncation of the cluster operator. The inclusion of connected triple excitations reduces the nonparallelism error in singles and doubles MRCC energies by a factor of 2-10. In the BeH(2) and H8 models, the inclusion of all quadruple excitations yields absolute energies within 1 kcal mol(-1) of the FCI limit. While the MRCC methods are very effective in multireference regions of the potential energy surfaces, they are outperformed by single-reference CC when one electronic configuration dominates.  相似文献   

8.
We develop an explicitly correlated multireference configuration interaction method (MRCI-F12) with multiple reference functions. It can be routinely applied to nearly degenerate molecular electronic structures near conical intersections and avoided crossings, where the reference functions are strongly mixed in the correlated wave function. This work is a generalization of the MRCI-F12 method for electronic ground states, reported earlier by Shiozaki et al. [J. Chem. Phys. 134, 034113 (2011)]. The so-called F12b approximation is used to arrive at computationally efficient formulas. The doubly external part of the wave function is expanded in terms of internally contracted configurations generated from all the reference functions. In addition, we introduce a singles correction to the CASSCF reference energies, which is applicable to multi-state calculations. As examples, we present numerical results for the avoided crossing of LiF, excited states of ozone, and the H(2)?+?OH (A(2)Σ(+)) reaction.  相似文献   

9.
Recently developed correlation consistent basis sets for the first row transition metal elements Sc-Zn have been utilized to determine complete basis set (CBS) scalar relativistic electron affinities, ionization potentials, and 4s(2)3d(n-2)-4s(1)d(n-1) electronic excitation energies with single reference coupled cluster methods [CCSD(T), CCSDT, and CCSDTQ] and multireference configuration interaction with three reference spaces: 3d4s, 3d4s4p, and 3d4s4p3d'. The theoretical values calculated with the highest order coupled cluster techniques at the CBS limit, including extrapolations to full configuration interaction, are well within 1 kcal/mol of the corresponding experimental data. For the early transition metal elements (Sc-Mn) the internally contracted multireference averaged coupled pair functional method yielded excellent agreement with experiment; however, the atomic properties for the late transition metals (Mn-Zn) proved to be much more difficult to describe with this level of theory, even with the largest reference function of the present work.  相似文献   

10.
An internally contracted multireference configuration interaction is developed which employs wave functions that explicitly depend on the electron-electron distance (MRCI-F12). This MRCI-F12 method has the same applicability as the MRCI method, while having much improved basis-set convergence with little extra computational cost. The F12b approximation is used to arrive at a computationally efficient implementation. The MRCI-F12 method is applied to the singlet-triplet separation of methylene, the dissociation energy of ozone, properties of diatomic molecules, and the reaction barrier and exothermicity of the F + H(2) reaction. These examples demonstrate that already with basis sets of moderate size the method provides near complete basis set MRCI accuracy, and hence quantitative agreement with the experimental data. As a side product, we have also implemented the explicitly correlated multireference averaged coupled pair functional method (MRACPF-F12).  相似文献   

11.
A state-specific partially internally contracted multireference coupled cluster approach is presented for general complete active spaces with arbitrary number of active electrons. The dominant dynamical correlation is included via an exponential parametrization of internally contracted cluster operators ( ?T) which excite electrons from a multideterminantal reference function. The remaining dynamical correlation and relaxation effects are included via a diagonalization of the transformed Hamiltonian ?? =e(- ?T)H?e( ?T) in the multireference configuration interaction singles space in an uncontracted fashion. A new set of residual equations for determining the internally contracted cluster amplitudes is proposed. The second quantized matrix elements of ?? , expressed using the extended normal ordering of Kutzelnigg and Mukherjee, are used as the residual equations without projection onto the excited configurations. These residual equations, referred to as the many-body residuals, do not have any near-singularity and thus, should allow one to solve all the amplitudes without discarding any. There are some relatively minor remaining convergence issues that may arise from an attempt to solve all the amplitudes and an initial analysis is provided in this paper. Applications to the bond-stretching potential energy surfaces for N(2), CO, and the low-lying electronic states of C(2) indicate clear improvements of the results using the many-body residuals over the conventional projected residual equations.  相似文献   

12.
13.
Tests have been made to benchmark and assess the relative accuracies of low-order multireference perturbation theories as compared to coupled cluster (CC) and full configuration interaction (FCI) methods. Test calculations include the ground and some excited states of the Be, H(2), BeH(2), CH(2), and SiH(2) systems. Comparisons with FCI and CC calculations show that in most cases the effective valence shell Hamiltonian (H(v)) method is more accurate than other low-order multireference perturbation theories, although none of the perturbative methods is as accurate as the CC approximations. We also briefly discuss some of the basic differences among the multireference perturbation theories considered in this work.  相似文献   

14.
We study quantum dynamics of the multichannel reactions of H(2)CO including the molecular and radical dissociation channels as well as the isomerization ones, H(2)CO-->trans-HCOH and trans-HCOH-->cis-HCOH. For this purpose, the previously developed potential energy function [T. Yonehara and S. Kato, J. Chem. Phys. 117, 11131 (2002)] is refined to give accurate transition state energies and to describe the radical dissociation channel. The cumulative reaction probabilities for the molecular dissociation and two isomerization channels are calculated by using the full Watson Hamiltonian. We also carry out wave packet dynamics calculations starting from the transition state region for the molecular dissociation. A contracted basis set for the angular coordinates is constructed to reduce the size of dynamics calculations. The intramolecular vibrational relaxation dynamics is found to be fast and almost complete within 300 fs. Using the energy filtered wave functions, the time propagation of HCOH population is obtained in the energy range from 81 to 94 kcal/mol. The branching ratio of the radical product is estimated by calculating the time dependent reactive fluxes to the molecular and radical dissociation products.  相似文献   

15.
A new version of the multireference Mukherjee's coupled cluster method with perturbative triexcitations has been formulated, which is based on the uncoupled approximation applied to the triples equation. In contrast to the method developed by Evangelista et al. [J. Chem. Phys. 132, 074107 (2010)], the proposed approach does not require to solve the equation for T(3) amplitudes iteratively, yet yields results of essentially the same quality. The method, abbreviated as MR MkCCSD(Tu), has been implemented in the ACES II program package and its assessment has been performed on the BeH(2) model and on the tetramethyleneethane molecule.  相似文献   

16.
17.
An earlier proposed propagator method for the treatment of molecular ionization is tested in first applications. The method referred to as the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator represents a computationally promising alternative to the existing Dyson ADC(3) method. The advantage of the nD-ADC(3) scheme is that the (N+/-1)-electronic parts of the one-particle Green's function are decoupled from each other and the corresponding equations can be solved separately. For a test of the method the nD-ADC(3) results for the vertical ionization transitions in C(2)H(4), CO, CS, F(2), H(2)CO, H(2)O, HF, N(2), and Ne are compared with available experimental and theoretical data including results of full configuration interaction (FCI) and coupled cluster computations. The mean error of the nD-ADC(3) ionization energies relative to the experimental and FCI results is about 0.2 eV. The nD-ADC(3) method, scaling as n(5) with the number of orbitals, requires the solution of a relatively simple Hermitian eigenvalue problem. The method renders access to ground-state properties such as dipole moments. Moreover, also one-electron properties of (N+/-1) electron states can now be studied as a consequence of a specific intermediate-state representation (ISR) formulation of the nD-ADC approach. Corresponding second-order ISR equations are presented.  相似文献   

18.
Summary We describe spin-projected Extended Hartree-Fock calculations, performed with a Valence Bond Self-Consistent Field program. Potential energy curves are given for BH, BeH, and N2. For BH the EHF function ranks well with the corresponding Spin-coupled and full CI wave functions. For BeH, the EHF function introduces spin contamination in the separated Be atom due to the rigidity of the wave function. This results in an inferior potential energy curve compared to Spin-coupled and full CI. The triple bond breaking in N2 is again nicely described by EHF. The Extended Hartree-Fock method as suggested by Löwdin can be a feasible tool in describing bond breaking.  相似文献   

19.
A simple, yet powerful wave function manipulation method was introduced utilizing a generalized ionic fragment approach that allows for systematic mapping of the wave function space for multispin systems with antiferromagnetic coupling. The use of this method was demonstrated for developing ground state electronic wave function for [2Fe-2S] and [Mo-3Fe-4S] clusters. Using well-defined ionic wave functions for ferrous and ferric irons, sulfide, and thiolate fragments, the accuracy of various density functionals and basis sets including effective core potentials were evaluated on a [4Fe-4S] cluster by comparing the calculated geometric and electronic structures with crystallographic data and experimental atomic spin densities from X-ray absorption spectroscopy, respectively. We found that the most reasonable agreement for both geometry and atomic spin densities is obtained by a hybrid functional with 5% HF exchange and 95% density functional exchange supplemented with Perdew's 1986 correlation functional. The basis set seems to saturate only at the triple-zeta level with polarization and diffuse functions. Reasonably preoptimized structures can be obtained by employing computationally less expensive effective core potentials, such as the Stuttgart-Dresden potential with a triple-zeta valence basis set. The extension of the described calibration methodology to other biologically important and more complex iron-sulfur clusters, such as hydrogenase H-cluster and nitrogenase FeMo-co will follow.  相似文献   

20.
An exponential multireference wave-function Ansatz is formulated. In accordance with the state universal coupled-cluster Ansatz of Jeziorski and Monkhorst [Phys. Rev. A 24, 1668 (1981)] the approach uses a reference specific cluster operator. In order to achieve state selectiveness the excitation- and reference-related amplitude indexing of the state universal Ansatz is replaced by an indexing which is based on excited determinants. There is no reference determinant playing a particular role. The approach is size consistent, coincides with traditional single-reference coupled cluster if applied to a single-reference, and converges to full configuration interaction with an increasing cluster operator excitation level. Initial applications on BeH2, CH2, Li2, and nH2 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号