首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The methoxy cation, CH30+, formed by collision-induced charge reversal of methoxr anions with a kinetic energy of 8 keY, has been differentiated from the isomenric CH2OH+ ion by performing low kinetic energy ion-molecule reactions In the radiofrequency-only quadrupole of a reverse-geometry double-focusing quadrupole hybrid mass spectrometer. The methoxy cation reacts with CH3SH, CH3?CH=CH2, (CH3)2O, and CH3CH2Cl by electron transfer, whereas the CH2OH+ ion reacts by proton transfer with these substrates  相似文献   

3.
New high-level quantum chemical calculations have been undertaken to understand the rates and mechanisms of the reactive and associative channels for the reactants C2H2(+) + H2. The reactive channel, which produces C2H3(+) + H, has been shown to be slightly endothermic, confirming earlier calculations at a somewhat lower level and in agreement with some recent experimental work. The associative channel, leading to C2H4+, has been shown to proceed via a transition state with negative energy relative to the reactants, so that association is predicted to be efficient. This result is in conflict with an earlier theoretical study but in agreement with low-temperature experimental measurements.  相似文献   

4.
Chen C  Hong SH 《Organic letters》2012,14(12):2992-2995
The ruthenium catalyzed selective sp(3) C-O cleavage with amide formation was reported in reactions of 3-alkoxy-1-propanol derivatives and amines. The cleavage only occurs at the C3-O position even with 3-benzyloxy-1-propanol. Based on the experimental results, O-bound and C-bound Ru enolate complexes were proposed as key intermediates for the unique selective sp(3) C-O bond cleavage in 3-alkoxy-1-propanols.  相似文献   

5.
Ethynyl isocyanide, H-C triple bond C-N triple bond C (1a), deuteroethynyl isocyanide, D-C triple bond C-N triple bond C (1b), prop-1-ynyl isocyanide, H3C-C triple bond C-N triple bond C (1c), and trideuteroprop-1-ynyl isocyanide, D3C-C triple bond C-N triple bond C (1d) are synthesized by flash vacuum pyrolysis of suitable organometallic precursor molecules (CO)5Cr(CN-CCl triple bond CClH) (5a), (CO)5Cr(CN-CCI=CClD) (5b), (CO)5Cr(CN-CCl=CCl-CH3) (5c) and (CO)5Cr(CN-CCI=CCl-CD3) (5d), respectively. Compounds 5a-d are formed in two steps by radical alkylation of tetraethyl-ammonium pentacarbonyl(cyano)chromate, NEt4[Cr(CO)5(CN)] (2) by 1,1,2,2,-tetrachloroethane (3a), 1,1,2,2-tetrachloro-1,2-dideuteroethane (3b), 1,1,2,2,-tetrachloropropane (3c), and 1,1,2,2-tetrachloro- 1,3,3,3-tetradeutero-propane (3d) yielding [(CO)5Cr(CN-CCl2-CCl2-H)] (4a), [(CO)5Cr(CN-CCl2-CCl2D)] (4b), [(CO)5Cr(CN-CCl2-CCl2-CH3)] (4c), and [(CO)5Cr(CN-CCl2-CCl2-CD3)] (4d). Dehalogenation of 4a-d using zinc in diethylether/acetic acid gives 5a-d, respectively. A multinuclear NMR study revealed the 1H-, 13C- and 15N-NMR data of 1a and 1c. Molecular spectroscopic data of 1c were determined by high resolution infrared spectroscopy. The by-products of the pyrolysis are the E and Z isomers of the halogenated ethenyl isocyanides H(Cl)C=CCl-NC (6a) and H3C(Cl)C=CCl-NC (6c) which have been characterized by IR, MS and NMR spectroscopy.  相似文献   

6.
The sequential transfer of two sulfonamides to internal alkenes affords the construction of vicinal diamines. In the presence of a palladium catalyst, the reaction proceeds through two mechanistically different C-N bond formation reactions. It is initiated by aminopalladation, followed by a reductive amination of a palladated secondary carbon. The overall process proceeds with complete selectivity for both steps and thereby generates a convenient access to heterocyclic structures such as bisindolines, annelated indolines, and bispyrrolidines.  相似文献   

7.
《Chemical physics letters》1986,123(6):471-475
We present a study of the hydride abstraction and charge transfer reactions of C+ with CH3OH in the relative energy range from 1.2 to 2.8 eV. Both reaction processes are direct in this collision energy range. The charge transfer reaction proceeds through large impact parameter collisions; the kinetic energy distributions indicate that the final product vibrational states are energy resonant with the recombination energy of the carbon cation. The hydride abstraction channel is a stripping reaction in which the product kinetic energy distributions have an unusual Gaussian shape, suggestive of the projection of the ground vibrational state wavefunction for the breaking C-H bond onto the continuum wavefunction associated with separation of the nascent products.  相似文献   

8.
The rate coefficient for the ion-molecule reaction NH3(+) + H2 --> NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He --> NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.  相似文献   

9.
Coordinatively saturated To(M)MgMe (1; To(M) = tris(4,4-dimethyl-2-oxazolinyl)phenylborate) is an active precatalyst for intramolecular hydroamination/cyclization at 50 °C. The empirical rate law of -d[substrate]/dt = k'(obs)[Mg](1)[substrate](1) and Michaelis-Menten-type kinetics are consistent with a mechanism involving reversible catalyst-substrate association prior to cyclization. The resting state of the catalyst, To(M)MgNHCH(2)CR(2)CH(2)CH═CH(2) [R = Ph, Me, -(CH(2))(5)-], is isolable, but isolated magnesium amidoalkene does not undergo unimolecular cyclization at 50 °C. However, addition of trace amounts of substrate allows cyclization to occur. Therefore, we propose a two-substrate, six-center transition state involving concerted C-N bond formation and N-H bond cleavage as the turnover-limiting step of the catalytic cycle.  相似文献   

10.
The optical emission resulting from collisions between C+ ions and H2 gas was measured in the energy range 2 to 20 eVc.m.. The observed spectrum consists mainly of the CH+ A 1Π → X 1Σ+ band system; CH+ (A fΠ) is shown to be formed in the chemiluminescent reactio: C+(2P0) + H2 → CH+(A 1Π) + H(2S). The energy dependence of the emission cross section was measured. The occurrence of this reaction is discussed in terms of a electronic state correlation diagram for the system.  相似文献   

11.
Ruthenium porphyrins [Ru(F(20)-TPP)(CO)] (F(20)-TPP = 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion) and [Ru(Por*)(CO)] (Por = 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl]porphyrinato dianion) catalyzed intramolecular amidation of sulfamate esters p-X-C(6)H(4)(CH(2))(2)OSO(2)NH(2) (X = Cl, Me, MeO), XC(6)H(4)(CH(2))(3)OSO(2)NH(2) (X = p-F, p-MeO, m-MeO), and Ar(CH(2))(2)OSO(2)NH(2) (Ar = naphthalen-1-yl, naphthalen-2-yl) with PhI(OAc)(2) to afford the corresponding cyclic sulfamidates in up to 89% yield with up to 100% substrate conversion; up to 88% ee was attained in the asymmetric intramolecular amidation catalyzed by [Ru(Por)(CO)]. Reaction of [Ru(F(20)-TPP)(CO)] with PhI[double bond]NSO(2)OCH(2)CCl(3) (prepared by treating the sulfamate ester Cl(3)CCH(2)OSO(2)NH(2) with PhI(OAc)(2)) afforded a bis(imido)ruthenium(VI) porphyrin, [Ru(VI)(F(20)-TPP)(NSO(2)OCH(2)CCl(3))(2)], in 60% yield. A mechanism involving reactive imido ruthenium porphyrin intermediate was proposed for the ruthenium porphyrin-catalyzed intramolecular amidation of sulfamate esters. Complex [Ru(F(20)-TPP)(CO)] is an active catalyst for intramolecular aziridination of unsaturated sulfonamides with PhI(OAc)(2), producing corresponding bicyclic aziridines in up to 87% yield with up to 100% substrate conversion and high turnover (up to 2014).  相似文献   

12.
The reactions of ten metastable immonium ions of general structure R1R2C?NH+C4H9 (R1 = H, R2 = CH3, C2H5; R1 = R2 = CH3) are reported and discussed. Elimination of C4H8 is usually the dominant fragmentation pathway. This process gives rise to a Gaussian metastable peak; it is interpreted in terms of a mechanism involving ion-neutral complexes containing incipient butyl) cations. Metastable immonium ions ontaining an isobutyl group are unique in undergoing a minor amount of imine (R1R2C?NH) loss. This decomposition route, which also produces a Gaussian metastable peak, decreases in importance as the basicity of the imine increases. The correlation between imine loss and the presence of an isobutyl group is rationalized by the rearrangement of the appropriate ion-neutral complexes in which there are isobutyl cations to the isomeric complexes containing the thermodynamically more stable tert-butyl cations. A sizeable amount of a third reaction, expulsion of C3H6, is observed for metastable n-C4H9 +NH?CR1R2 ions; in contrast to C4H8 and R1R2C?NH loss, C3H6 elimination occurs with a large kinetic energy release (40–48 kJ mol?1) and is evidenced by a dish-topped metastable peak. This process is explained using a two-step mechanism involving a 1,5-hydride shift, followed by cleavage of the resultant secondary open-chain cations, CH3CH+ CH2CH2NHCHR1R2.  相似文献   

13.
A facile synthesis of 7-alkylamino- and 7-cycloalkylaminotetracycline derivatives has been accomplished using an in situ generated aminostannane precursor. This procedure is advantageous in that it allows the concise synthesis of a number of unreported tetracycline derivatives that are cumbersome to prepare through traditional methods. These compounds are crucial to understanding structure activity relationships in the D-ring of tetracycline-type antibiotics and the acquired efflux resistance mechanism to this class of antibiotics.  相似文献   

14.
A highly efficient Cu-catalyzed tandem C-N bond-forming reaction of 1,4-dihalo-1,3-dienes has been developed. The transformation allows the synthesis of pyrroles and heteroarylpyrroles with a wide variety of functional groups and substitution patterns from readily available precursors.  相似文献   

15.
Yao PY  Zhang Y  Hsung RP  Zhao K 《Organic letters》2008,10(19):4275-4278
A sequential metal-catalyzed C-N bond formation employing ortho-haloaryl acetylenic bromides is described. The initial amidation is highly selective for C (sp)-N bond formation, leading to o-haloaryl-substituted ynamides that can be useful building blocks, while the overall sequence provides a facile construction of 2-amido-indoles.  相似文献   

16.
The reduction kinetics of [Ru(NH(3))(6)](3+) was studied at Au(111) and Au(100) single-crystal ultramicroelectrodes in dilute perchloric acid electrolytes. Both heterogeneous rate constants and experimental transfer coefficients varied with the crystallographic orientation of the gold surface. The value of the heterogeneous rate constant at Au(111) was significantly larger than that at Au(100). The experimental transfer coefficients also increased but in the opposite order. Standard rate constants at both electrodes increased with an increase in electrolyte concentration. Using double-layer data obtained in 0.01 M HClO(4), it is shown that the true transfer coefficient for this reaction is 0.5 within experimental error. The effective charge on the reactant which has a nominal charge of +3 is close to +1. The latter result reflects the distribution of charge within the polyatomic reactant.  相似文献   

17.
A variety of functionalized N-amino-3-nitrile-indole derivatives are obtained via an intramolecular hetero-cyclization of 2-aryl-3-substituted hydrazono-alkylnitriles using FeBr(3) as a single electron oxidant. This approach allows the N-moiety on the side-chain to be annulated to the benzene ring during the final synthetic step via direct oxidative aromatic C-N bond formation.  相似文献   

18.
In this communication, we demonstrate that the scope of our electron transfer initiated cyclization reaction can be significantly broadened by exploiting the relationship between the oxidation potentials of homobenzylic ethers and the mesolytic benzylic carbon-carbon bond dissociation energies of their radical cations. By lowering the oxidation potential of the electrophore and the benzylic carbon-carbon bond dissociation energy, we can initiate reactions under mild, nonphotochemical conditions. The selectivity of the arene oxidation and the mild reaction conditions allow a variety of electron-rich olefins to serve as nucleophilic groups to form carbon-carbon bonds with excellent efficiency.  相似文献   

19.
The direct functionalization of heterocyclic compounds has emerged as one of the most important topics in the field of metal-catalyzed C-H bond activation due to the fact that products are an important synthetic motif in organic synthesis, the pharmaceutical industry, and materials science. This critical review covers the recent progresses on the regioselective dehydrogenative direct coupling reaction of heteroarenes, including arylation, olefination, alkynylation, and amination/amidation mainly utilizing transition metal catalysts (113 references).  相似文献   

20.
The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号