首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predissociation dynamics of methylamines (CH(3)NH(2) and CH(3)ND(2)) on the first electronically excited states are studied using the slow-electron velocity imaging method to unravel the multi-dimensional nature of the N-H(D) chemical bond dissociation reaction which occurs via tunnelling. The nearly free internal rotation around the C-N bond axis is found to be strongly coupled to the reaction pathway, revealing nuclear motions actively involved in the tunnelling process on the S(1) potential energy surfaces. The vibrational state-resolved energy and angular distributions of photoelectron, ejected from the ionization mediated by the metastable intermediate S(1) state provide a unique way for mapping the predissociative potential energy surfaces.  相似文献   

2.
The stereocontrol steps of the (S)-proline catalyzed Mannich reaction of cyclohexanone, formaldehyde, and aniline were theoretically investigated. The geometries of reactants, products, and transition states were optimized using density functional theory using the B3LYP functional with the 6-31++G(d,p) basis set. The energies of these compounds were then more accurately determined at the MP2 level, and the effect of DMSO as the solvent was included using a polarizable continuum model (PCM). The reaction was modeled from the previously proposed mechanism that cyclohexanone reacts with (S)-proline to generate an enamine, while formaldehyde reacts with aniline to produce an imine, and that the conformation around the C-N bond of the enamine 1 is crucial for the further enantioselective step. The formation of two conformations of the enamine via a proton transfer process was examined, revealing activation barriers for syn- and anti-enamine proton transfer of 10.2 and 17.9 kcal/mol, respectively. The transformation of syn- to anti-enamine through C-N bond rotation, however, was predicted to require only 4.2 kcal/mol, while the (S)- and (R)-intermediates could be obtained from subsequent reactions between enamine and imine with energy barriers of 8.5 and 12.4 kcal/mol, respectively. The difference between these barriers, but not the C-N rotation energy, becomes larger at the MP2 level and when DMSO as a solvent is included. This predicted enantioselective reaction, through the kinetic and thermodynamic favoring of the (S)-pathway, is in agreement with experimental results, which have reported the (S)-configuration as the major product.  相似文献   

3.
This study investigates two features of interest in recent work on the photolytic production of the methoxy carbonyl radical and its subsequent unimolecular dissociation channels. Earlier studies used methyl chloroformate as a photolytic precursor for the CH3OCO, methoxy carbonyl (or methoxy formyl) radical, which is an intermediate in many reactions that are relevant to combustion and atmospheric chemistry. That work evidenced two competing C-Cl bond fission channels, tentatively assigning them as producing ground- and excited-state methoxy carbonyl radicals. In this study, we measure the photofragment angular distributions for each C-Cl bond fission channel and the spin-orbit state of the Cl atoms produced. The data shows bond fission leading to the production of ground-state methoxy carbonyl radicals with a high kinetic energy release and an angular distribution characterized by an anisotropy parameter, beta, of between 0.37 and 0.64. The bond fission that leads to the production of excited-state radicals, with a low kinetic energy release, has an angular distribution best described by a negative anisotropy parameter. The very different angular distributions suggest that two different excited states of methyl chloroformate lead to the formation of ground- and excited-state methoxy carbonyl products. Moreover, with these measurements we were able to refine the product branching fractions to 82% of the C-Cl bond fission resulting in ground-state radicals and 18% resulting in excited-state radicals. The maximum kinetic energy release of 12 kcal/mol measured for the channel producing excited-state radicals suggests that the adiabatic excitation energy of the radical is less than or equal to 55 kcal/mol, which is lower than the 67.8 kcal/mol calculated by UCCSD(T) methods in this study. The low-lying excited states of methylchloroformate are also considered here to understand the observed angular distributions. Finally, the mechanism for the unimolecular dissociation of the methoxy carbonyl radical to CH3 + CO2, which can occur through a transition state with either cis or, with a much higher barrier, trans geometry, was investigated with natural bond orbital computations. The results suggest donation of electron density from the nonbonding C radical orbital to the sigma* orbital of the breaking C-O bond accounts for the additional stability of the cis transition state.  相似文献   

4.
《Chemical physics letters》1986,123(6):471-475
We present a study of the hydride abstraction and charge transfer reactions of C+ with CH3OH in the relative energy range from 1.2 to 2.8 eV. Both reaction processes are direct in this collision energy range. The charge transfer reaction proceeds through large impact parameter collisions; the kinetic energy distributions indicate that the final product vibrational states are energy resonant with the recombination energy of the carbon cation. The hydride abstraction channel is a stripping reaction in which the product kinetic energy distributions have an unusual Gaussian shape, suggestive of the projection of the ground vibrational state wavefunction for the breaking C-H bond onto the continuum wavefunction associated with separation of the nascent products.  相似文献   

5.
《Progress in Surface Science》2007,82(7-8):435-477
Recent progress in angle-resolved measurements of desorbing surface reaction products is reviewed. The angular and velocity distributions of desorbing products with hyper-thermal energy deliver the most direct structural information of the product formation site. These distributions yield the orientation of the intermediate species emitting the product as well as the shape of the product formation site. This method works well even when the overall reaction rate is controlled by reactant adsorption or when the interaction between adsorbed species is obscured in kinetic studies under steady-state conditions. For its application, however, information about the reaction mechanism is requisite because the method is directly linked to the reaction itself. Analysis of the product emission in NO reduction on palladium and rhodium as well as the product formation site and its switchover in CO oxidation on platinum is exemplified.  相似文献   

6.
The oxidation reaction dynamics of gas-phase molybdenum atoms by oxygen molecules was studied under a crossed-beam condition. The product MoO was detected by a time-of-flight mass spectrometer combined with laser multi-photon ionization. An acceleration lens system designed for the ion-velocity mapping condition, a two-dimensional (2D) detector, and a time-slicing technique were used to obtain the velocity and angular distributions of the products at three collision energies: 10.0, 17.8, and 50.0 kJ/mol. The angular distributions showed forward and backward peaks, whose relative intensities changed by the collision energy. While two peaks had similar intensities at low collision energies, the forward peak became dominant at the highest collision energy, 50 kJ/mol. The product kinetic energy distributions showed a good correlation with the initial collision energies, i.e., almost the same energy as the collision energy appeared as the product kinetic energy. These results suggested that the reaction proceeds via an intermediate complex, and the lifetime of the complex becomes shorter than its rotational period at high collision energy.  相似文献   

7.
The photodissociation dynamics of allyl chloride at 235 nm producing atomic Cl((2)P(J);J=1/2,3/2) fragments is investigated using a two-dimensional photofragment velocity ion imaging technique. Detection of the Cl((2)P(1/2)) and Cl((2)P(3/2)) products by [2+1] resonance enhanced multiphoton ionization shows that primary C-Cl bond fission of allyl chloride generates 66.8% Cl((2)P(3/2)) and 33.2% Cl((2)P(1/2)). The Cl((2)P(3/2)) fragments evidenced a bimodal translational energy distribution with a relative weight of low kinetic energy Cl((2)P(3/2))/high kinetic energy Cl((2)P(3/2)) of 0.097/0.903. The minor dissociation channel for C-Cl bond fission, producing low kinetic energy chlorine atoms, formed only chlorine atoms in the Cl((2)P(3/2)) spin-orbit state. The dominant C-Cl bond fission channel, attributed to an electronic predissociation that results in high kinetic energy Cl atoms, produced both Cl((2)P(1/2)) and Cl((2)P(3/2)) atomic fragments. The relative branching for this dissociation channel is Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))]=35.5%. The average fraction of available energy imparted into product recoil for the high kinetic energy products was found to be 59%, in qualitative agreement with that predicted by a rigid radical impulsive model. Both the spin-orbit ground and excited chlorine atom angular distributions were close to isotropic. We compare the observed Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))] ratio produced in the electronic predissociation channel of allyl chloride with a prior study of the chlorine atom spin-orbit states produced from HCl photodissociation, concluding that angular momentum recoupling in the exit channel at long interatomic distance determines the chlorine atom spin-orbit branching.  相似文献   

8.
The photodissociation dynamics of the diazomethyl (HCNN) radical have been studied using fast radical beam photofragment translational spectroscopy. A photofragment yield spectrum was obtained for the range of 25,510-40,820 cm(-1), and photodissociation was shown to occur for energies above 25,600 cm(-1). The only product channel observed was the formation of CH and N2. Fragment translational energy and angular distributions were obtained at several energies in the range covered by the photofragment yield spectrum. The fragment translational energy distributions showed at least two distinct features at energies up to 4.59 eV, and were not well fit by phase space theory at any of the excitation energies studied. A revised C-N bond dissociation energy and heat of formation for HCNN, D0(HC-NN)=1.139+/-0.019 eV and DeltafH0(HCNN)=5.010+/-0.023 eV, were determined.  相似文献   

9.
The charge transfer and deuterium ion transfer reactions between D(2)O(+) and C(2)H(4) have been studied using the crossed beam technique at relative collision energies below one electron volt and by density functional theory (DFT) calculations. Both direct and rearrangement charge transfer processes are observed, forming C(2)H(4) (+) and C(2)H(3)D(+), respectively. Independent of collision energy, deuterium ion transfer accounts for approximately 20% of the reactive collisions. Between 22 and 36 % of charge transfer collisions occur with rearrangement. In both charge transfer processes, comparison of the internal energy distributions of products with the photoelectron spectrum of C(2)H(4) shows that Franck-Condon factors determine energy disposal in these channels. DFT calculations provide evidence for transient intermediates that undergo H/D migration with rearrangement, but with minimal modification of the product energy distributions determined by long range electron transfer. The cross section for charge transfer with rearrangement is approximately 10(3) larger than predicted from the Rice-Ramsperger-Kassel-Marcus isomerization rate in transient complexes, suggesting a nonstatistical mechanism for H/D exchange. DFT calculations suggest that reactive trajectories for deuterium ion transfer follow a pathway in which a deuterium atom from D(2)O(+) approaches the pi-cloud of ethylene along the perpendicular bisector of the C-C bond. The product kinetic energy distributions exhibit structure consistent with vibrational motion of the D-atom in the bridged C(2)H(4)D(+) product perpendicular to the C-C bond. The reaction quantitatively transforms the reaction exothermicity into internal excitation of the products, consistent with mixed energy release in which the deuterium ion is transferred in a configuration in which both the breaking and the forming bonds are extended.  相似文献   

10.
Unimolecular evaporation in rotating, nonspherical atomic clusters is investigated using phase space theory in its orbiting transition state version. The distributions of the total kinetic energy release epsilon(tr) and the rotational angular momentum J(r) are calculated for oblate top and prolate top main products with an arbitrary degree of deformation. The orientation of the angular momentum of the product cluster with respect to the cluster symmetry axis has also been obtained. This statistical approach is tested in the case of the small eight-atom Lennard-Jones cluster, for which comparison with extensive molecular dynamics simulations is presented. The role of the cluster shape has been systematically studied for larger, model clusters in the harmonic approximation for the vibrational densities of states. We find that the type of deformation (prolate versus oblate) plays little role on the distributions and averages of epsilon(tr) and J(r) except at low initial angular momentum. However, alignment effects between the product angular momentum and the symmetry axis are found to be significant, and maximum at some degree of oblateness. The effects of deformation on the rotational cooling and heating effects are also illustrated.  相似文献   

11.
Rotational state resolved center-of-mass angular scattering and kinetic energy release distributions have been determined for the HCl (v' = 0, j' = 0-6) products of the reaction of chlorine with n-butane using the photon-initiated reaction technique, coupled with velocity-map ion imaging. The angular and kinetic energy release distributions derived from the ion images are very similar to those obtained previously for the Cl plus ethane reaction. The angular distributions are found to shift from forward scattering to more isotropic scattering with increasing HCl rotational excitation. The kinetic energy release distributions indicate that around 30% of the available energy is channeled into internal excitation of the butyl radical products. The data analysis also suggests that H-atom abstraction takes place from both primary and secondary carbon atom sites, with the primary site producing rotationally cold, forward scattered HCl (v' = 0) products, and the secondary site yielding more isotropically scattered HCl (v' = 0) possessing higher rotational excitation. The mechanisms leading to these two product channels are discussed in the light of the present findings, and in comparison with studies of other Cl plus alkane reactions.  相似文献   

12.
The oxidation reaction dynamics of the gas-phase yttrium atoms by oxygen molecules was studied under crossed-beam conditions. The product YO was detected using a time-of-flight mass spectrometer combined with laser single-photon ionization. An acceleration lens system designed for the ion-velocity mapping conditions, a two-dimensional (2-D) detector, and a time-slicing technique were used to obtain the velocity and angular distributions of the products. Two ionization wavelengths were used for the internal (vibrational and/or electronic) energy selective detection of YO. The single photon of the shorter wavelength (202.0 nm) can ionize all states of YO(X?(2)Σ, A'?(2)Δ, and A?(2)Π), while electronically excited YO(A' and A) are dominantly ionized at a longer wavelength (285.0 nm). Time-sliced images were converted to the velocity and angular distributions in the center-of-mass frame. The general features of the velocity distributions of YO, determined at two wavelengths, were well represented by those expected from the statistical energy disposal model. The forward-backward symmetry was also observed for two images. These results suggest that the reaction proceeds via long-lived intermediates, and that this mechanism is consistent with previous chemiluminescence/LIF studies.  相似文献   

13.
The O((1)D) + C(3)H(8) reaction has been reinvestigated using the universal crossed molecular beam method. Three reaction channels, CH(3) + C(2)H(4)OH, C(2)H(5) + CH(2)OH, and OH + C(3)H(7), have been observed. All three channels are significant in the title reaction with the C(2)H(5) formation process to be the most important, while the CH(3) formation and the OH formation channels are about equal. Product kinetic energy distributions and angular distributions have been determined for the three reaction channels observed. The oxygen-containing radicals in the CH(3) and C(2)H(5) formation pathways show forward-backward symmetric angular distribution relative to the O atom beam, while the OH product shows a clearly forward angular distribution. These results indicate that the OH formation channel seems to exhibit different dynamics from the CH(3) and C(2)H(5) channels.  相似文献   

14.
Ateşin TA  Jones WD 《Inorganic chemistry》2008,47(23):10889-10894
Theoretical studies were performed on the C-S bond activation reactions of 2-/3-cyanothiophene, 2-/3-methoxythiophene, and 2-/3-methylthiophene with the [Rh(PMe3)(C5Me5)] fragment to compare with the selectivity of these reactions observed in the experimental study, with the goal of determining whether the latter represent kinetic or thermodynamic products. Density functional theory (DFT) calculations have been used to optimize the ground-state structures of the two possible insertion products and the transition state structures leading to the formation of the products arising from the above cleavage reactions to address this question. With the 2-cyano and 2-methoxy substituents, the observed formation of one product resulting from the exclusive insertion of the rhodium into the more hindered substituted C-S bond was found to be consistent with the calculated energy differences between the ground states of the two possible products (7.6 and 2.6 kcal mol(-1)). With 2-methylthiophene, the product resulting from the activation of the unsubstituted C-S bond is calculated to be favored by 5.8 kcal mol(-1), in agreement with observed results. The approximately 1:1 ratio of products with 3-cyano and 3-methyl substituted thiophenes are also found to be consistent with the small calculated energy differences (0.4 and 0.8 kcal mol(-1)) between the ground states of the two insertion products. Although the observed high selectivity in the formation of a single C-S bond activation product with 3-methoxythiophene appears to be underestimated in the calculations, the observed products for all substituted thiophenes correlate with the calculated thermodynamic products. In addition, the kinetic selectivities predicted based on the calculated C-S bond activation barriers are different from those observed experimentally. Consequently, these investigations demonstrate that DFT calculations can be used reliably to differentiate if an experimentally observed C-S bond activation reaction proceeds under thermodynamic or kinetic control.  相似文献   

15.
The photodissociation of CH2XCH2Y (X,Y=Br,Cl) through absorption of 193 nm photons was investigated using product translational spectroscopy. No stable CH2BrCH2 or CH2ClCH2 was detected. The recorded time-of-flight spectra indicate that these internally excited radicals dissociated into Y+C2H4 in a concerted reaction with the first C-X bond rupture. Product anisotropy implies that the overall reaction time for three-body formation is in a fraction of rotational period. According to an asynchronous concerted reaction model, the measured spectra were simulated with product translational energy distributions coupled by asymmetric angular distributions. For the mixed halide, CH2BrCH2Cl, triple products Br+Cl+C2H4 can be originated from the cleavage of either the C-Br bond or the C-Cl bond. The results are discussed and where appropriate, comparisons with previous investigations of the related molecules are included.  相似文献   

16.
The dynamics of the radical-radical reaction O((3)P) + CH(3), a prototypical case for the reactions of atomic oxygen with alkyl radicals of great relevance in combustion chemistry, has been investigated by means of the crossed molecular beam technique with mass spectrometric detection at a collision energy of 55.9 kJ mol(-1). The results have been examined in the light of previous kinetic and theoretical work. From product angular and velocity distribution measurements, the dynamics of the predominant H-displacement channel leading to formaldehyde formation has been characterized. This channel has been found to proceed via the formation of an osculating complex; a significant coupling between the product centre-of-mass angular and translational energy distributions has been noted. Experimental attempts to characterize the dynamics of the channel leading to HCO + H(2) have failed and it remains unclear whether HCO is formed by the reaction and/or, if formed, a part of HCO does not dissociate quickly into CO + H.  相似文献   

17.
Three-coordinate Mo[N((t)Bu)Ar]3 binds cyanide to form the intermediate [Ar((t)Bu)N]3Mo-CN-Mo[N((t)Bu)Ar]3 but, unlike its N2 analogue which spontaneously cleaves dinitrogen, the C-N bond remains intact. DFT calculations on the model [NH2]3Mo/CN- system show that while the overall reaction is significantly exothermic, the final cleavage step is endothermic by at least 90 kJ mol(-1), accounting for why C-N bond cleavage is not observed experimentally. The situation is improved for the [H2N]3W/CN- system where the intermediate and products are closer in energy but not enough for CN- cleavage to be facile at room temperature. Additional calculations were undertaken on the mixed-metal [H2N]3Re+/CN- /W[NH2]3 and [H2N]3Re+/CN-/Ta[NH2]3 systems in which the metals ions were chosen to maximise the stability of the products on the basis of an earlier bond energy study. Although the reaction energetics for the [H2N]3Re+/CN /W[NH2]3 system are more favourable than those for the [H2N]3W/CN- system, the final C-N cleavage step is still endothermic by 32 kJ mol(-1) when symmetry constraints are relaxed. The resistance of these systems to C-N cleavage was examined by a bond decomposition analysis of [H2N]M-L1[triple bond]L2-M[NH2]3 intermediates for L1[triple bond]L2 = N2, CO and CN which showed that backbonding from the metal into the L1[triple bond]L2 pi* orbitals is significantly less for CN than for N2 or CO due to the negative charge on CN- which results in a large energy gap between the metal d(pi), and the pi* orbitals of CN-. This, combined with the very strong M-CN- interaction which stabilises the CN intermediate, makes C-N bond cleavage in these systems unfavourable even though the C[triple bond]N triple bond is not as strong as the bond in N2 or CO.  相似文献   

18.
We have measured absolute reaction cross sections for the interaction of O(+) with ethane, propane, and n-butane at collision energies in the range from near thermal to approximately 20 eV, using the guided-ion beam (GIB) technique. We have also measured product recoil velocity distributions using the GIB time-of-flight (TOF) technique for several product ions at a series of collision energies. The total cross sections for each alkane are in excess of 100 A(2) at energies below approximately 2 eV, and in each case several ionic products arise. The large cross sections suggest reactions that are dominated by large impact parameter collisions, as is consistent with a scenario in which the many products derive from a near-resonant, dissociative charge-transfer process that leads to several fragmentation pathways. The recoil velocities, which indicate product ions with largely thermal velocity distributions, support this picture. Several product ions, most notably the C(2)H(3) (+) fragment for each of the alkanes, exhibit enhanced reaction efficiency as collision energy increases, which can be largely attributed to endothermic channels within the dissociative charge-transfer mechanism.  相似文献   

19.
The reactions between O(-) and C(2)H(2) have been studied using the crossed-beam technique and density-functional theory (DFT) calculations in the collision energy range from 0.35 to 1.5 eV (34-145 kJmol). Both proton transfer and C-O bond formation are observed. The proton transfer channel forming C(2)H(-) is the dominant pathway. The center-of-mass flux distributions of the C(2)H(-) product ions are highly asymmetric, with maxima close to the velocity and direction of the precursor acetylene beam, characteristic of direct reactions. The reaction quantitatively transforms the entire reaction exothermicity into internal excitation of the products, consistent with mixed energy release in which the proton is transferred in a configuration in which both the breaking and the forming bonds are extended. The C-O bond formation channel producing HC(2)O(-) displays a distinctive kinematic picture in which the product distribution switches from predominantly forward scattering with a weak backward peak to sideways scattering as the collision energy increases. At low collision energies, the reaction occurs through an intermediate that lives a significant fraction of a rotational period. The asymmetry in the distribution leads to a lifetime estimate of 600 fs, in reasonable agreement with DFT calculations showing that hydrogen-atom migration is rate limiting. At higher collision energies, the sideways-scattered products arise from repulsive energy release from a bent transition state.  相似文献   

20.
The reactions between OH+(3Sigma-) and C2H2 have been studied using crossed ion and molecular beams and density functional theory calculations. Both charge transfer and proton transfer channels are observed. Products formed by carbon-carbon bond cleavage analogous to those formed in the isoelectronic O(3P)+C2H2 reaction, e.g., 3CH2 + HCO+, are not observed. The center of mass flux distributions of both product ions at three different energies are highly asymmetric, with maxima close to the velocity and direction of the precursor acetylene beam, characteristic of direct reactions. The internal energy distributions of the charge transfer products are independent of collision energy and are peaked at the reaction exothermicity, inconsistent with either the existence of favorable Franck-Condon factors or energy resonance. In proton transfer, almost the entire reaction exothermicity is transformed into product internal excitation, consistent with mixed energy release in which the proton is transferred with both the breaking and forming bonds extended. Most of the incremental translational energy in the two higher-energy experiments appears in product translational energy, providing an example of induced repulsive energy release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号