首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
通过分段线性插值多项式方法构造了一类含有Hadamard有限部分积分的非线性常微分方程的数值离散格式.在时间方向上, 利用分段线性插值多项式方法对分数阶导数项进行近似, 并通过二阶向后差分格式来离散整数阶导数项.经过详细的证明, 得到了收敛精度为O(τmin{1+α,1+β})的误差估计结果.最后,通过数值算例和理论结果的对比直观地说明了理论分析的正确性.  相似文献   

2.
联合Duffing方程和Van der Pol方程的非线性分数阶微分方程   总被引:1,自引:0,他引:1  
本文研究了Adomian分解方法在非线性分数阶微分方程求解中的应用. 利用Riemann-Liouville分数阶导数和Adomian分解方法, 将Duffing方程和Van der Pol方程联合在一个分数阶方程中,并获得了此方程的解析近似解.  相似文献   

3.
非线性分数阶微分方程的奇摄动   总被引:1,自引:0,他引:1  
莫嘉琪 《应用数学学报》2006,29(6):1085-1090
研究了—类奇摄动非线性分数阶微分方程Cauchy问题.在适当的条件下,首先求出了原问题的外部解,然后利用伸长变量、合成展开法和幂级数展开理论构造出解的初始层项,并由此得到解的形式渐近展开式.最后利用微分不等式理论,讨论了问题解的渐近性态,得到了原问题解的一致有效的渐近估计式.  相似文献   

4.
朱红宝  陈松林 《应用数学》2017,30(4):814-818
本文研究一类非线性分数阶时滞微分方程的奇摄动.利用伸长变量法构造了问题的形式渐近解,并利用微分不等式理论证明了解的一致有效性.  相似文献   

5.
研究了一类奇摄动非线性分数阶微分方程边值问题.在适当的条件下,首先求出了原问题的外部解,然后利用伸长变量、合成展开法和幂级数展开理论构造出解的边界层项,并由此得到解的渐近展开式.最后利用微分不等式理论,讨论了问题解的渐近性态,得到了原问题解的一致有效的渐近估计式.  相似文献   

6.
本文给出了分数阶积分微分方程的一种新的解法.利用未知函数的泰功多项式展开将分数阶积分微分方程近拟转化为一个涉及未知函数及其n阶导数的线性方程组.数值例子表明该方法的有效性.  相似文献   

7.
本文基于移位的Legendre多项式构造一类新的正交拟Legendre多项式求解一类分数阶微分方程.用阶数随所求未知函数的微分的阶数而变化的拟Legendre多项式逼近未知函数;利用分数阶积分的性质推导拟Legendre多项式的积分算子阵,结合算子矩阵的思想和Tau方法,将问题转化为求解代数方程组的问题.最后,给出数值算例证明该方法的有效性.  相似文献   

8.
为了求解一类非线性分数阶Fredholm积分微分方程的数值解,本文将Adomian分解法(Adomian Decomposition Method,ADM)引入到非线性分数阶Fredholm微积分方程的求解中.将ADM多项式与分数阶积分定义有效结合,得到Adomian级数解.通过收敛性分析证明所得的级数解收敛于精确解,给出最大绝对截断误差.并结合实例,证明方法的有效性和实用性.  相似文献   

9.
冯再勇  陈宁 《应用数学和力学》2015,36(11):1211-1218
研究了利用Adomian分解求解分数阶微分代数系统的方法.分析了代数约束对Adomian方法求解的影响,指出直接解出代数约束变量,将原系统转化为微分系统进行Adomian分解的困难.提出确定代数变量级数解各分量的新方法,据此进行Adomian分解,得到整个系统的级数解.特别研究了代数约束为线性的分数阶微分代数系统的Adomian解法,证明了各变量间的线性代数约束关系可以转化为相应级数解中各分量的线性关系,从而方便求解,并结合具体例子证明了该方法简便有效.  相似文献   

10.
分数阶微积分是一个古老而又新颖的课题,近30年来,由于在包括分形现象在内的物理、工程等诸多应用学科领域应用的拓展,激发了科研人员对分数阶微积分的巨大热情。分数阶微分方程现在已应用于分数物理学、混沌与湍流、粘弹性力学与非牛顿流体力学、高分子材料的解链、自动控制理论、化学物理、随机过程和反常扩散等许多科学领域。分数阶微分方程边值问题是非线性常微分方程理论研究中一个活跃而成果丰硕的领域。本文讨论了分数阶微分方程边值问题的一些理论,介绍了作者的著作《分数阶微分方程边值问题理论及应用》的基本内容。  相似文献   

11.
12.
In this paper, a new improved Adomian decomposition method is proposed, which introduces a convergence-control parameter into the standard Adomian decomposition method and establishes a new iterative formula. The examples prove that the presented method is reliable, efficient, easy to implement from a computational viewpoint and can be employed to derive successfully analytical approximate solutions of fractional differential equations.  相似文献   

13.
Haar wavelet operational matrix has been widely applied in system analysis, system identification, optimal control and numerical solution of integral and differential equations. In the present paper we derive the Haar wavelet operational matrix of the fractional order integration, and use it to solve the fractional order differential equations including the Bagley-Torvik, Ricatti and composite fractional oscillation equations. The results obtained are in good agreement with the existing ones in open literatures and it is shown that the technique introduced here is robust and easy to apply.  相似文献   

14.
In this paper, a new numerical method for solving fractional differential equations is presented. The fractional derivative is described in the Caputo sense. The method is based upon Bernoulli wavelet approximations. The Bernoulli wavelet is first presented. An operational matrix of fractional order integration is derived and is utilized to reduce the initial and boundary value problems to system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

15.
In this article, we proposed an auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations. This method is called the Auxiliary Laplace Parameter Method (ALPM). The nonlinear terms can be easily handled by the use of Adomian polynomials. Comparison of the present solution is made with the existing solutions and excellent agreement is noted. The fact that the proposed technique solves nonlinear problems without any discretization or restrictive assumptions can be considered as a clear advantage of this algorithm over the numerical methods.  相似文献   

16.
In this paper, the existence of solutions of an anti-periodic fractional boundary value problem for nonlinear fractional differential equations is investigated. The contraction mapping principle and Leray-Schauder’s fixed point theorem are applied to establish the results.  相似文献   

17.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

18.
We discuss the solvability of integral equations associated with initial value problems for a nonlinear differential equation of fractional order. The differential operator is the Caputo fractional derivative and the inhomogeneous term depends on the fractional derivative of lower orders. We obtain the existence of at least one solution for integral equations using the Leray–Schauder Nonlinear Alternative for several types of initial value problems. In addition, using the Banach contraction principle, we establish sufficient conditions for unique solutions. Our approach in obtaining integral equations is the “reduction” of the fractional order of the integro-differential equations based on certain semigroup properties of the Caputo operator.  相似文献   

19.
In this paper, the variational iteration method and the Adomian decomposition method are implemented to give approximate solutions for linear and nonlinear systems of differential equations of fractional order. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. This paper presents a numerical comparison between the two methods for solving systems of fractional differential equations. Numerical results show that the two approaches are easy to implement and accurate when applied to differential equations of fractional order.  相似文献   

20.
We are concerned with the nonlinear differential equation of fractional order $$\mathcal{D}^{\alpha}_{0+}u(t)=f(t,u(t),u'(t)),\quad \mbox{a.\,e.}\ t\in (0,1),$$ where $\mathcal{D}^{\alpha}_{0+}$ is the Riemann-Liouville fractional order derivative, subject to the boundary conditions $$u(0)=u(1)=0.$$ We obtain the existence of at least one solution using the Leray-Schauder Continuation Principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号