首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium reactions of scandium(III) with some triprotic catechol derivatives (H3L) were studied. The selected ligands that are 2,3-dihydroxybenzoic acid (2,3-DHBA), 3,4-dihydroxybenzoic acid (3,4-DHBA), 3.4-dihydroxyhydrocinnamic acid (3,4-DHHCA), and 3,4-dihydroxyphenylacetic acid (3,4-DHPA) were investigated in aqueous solution by means of potentiometry in 0.1 M ionic medium at 25°C. The stability constants are reported for the ScL and ScL(H2L) mononuclear complexes. 2,3-DHBA can bind to Sc3+ ion strongly and the salicylate mode (COO, O) is effective over the acidic pH range. But in higher pH range, 3,4-DHBA, 3,4-DHHCA, and 3,4-DHPA act more efficiently through catecholate groups (O, O).Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 3, 2005, pp. 229–233.Original Russian Text Copyright © 2005 by Türkel, Özer.This revised version was published online in April 2005 with a corrected cover date.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

2.
IR spectra are reconsidered on the basis of the results of x-ray structural analysis of the crystal structures of hydrochlorides and complex salts of 2,3-polymethylene-3,4-dihydroquinazolines and-4-quinazolones. It has been established that two absorption bands (Nl+–H) in the complex salts characterize different energies of formation of an H-bond, which is weaker than in the corresponding hydrochlorides. The nature of an absorption band in the 3400–3500 cm–1 region has been established from the XSA results.Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (371) 120 64 75. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 364–367, May–June, 1999.  相似文献   

3.
The crystal and molecular structure of the alkaolid 2,3-tetramethylen-3,4-dihydroquinazoline hydrochloride was solved by X-ray structure analysis. It was demonstrated that the crystal contains an aqua system similar to those in the isostructural 2,3-trimethylen-3,4-dihydroquinazoline (deoxypeganine), and 2,3-pentamethylen-3,4-dihydroquinazoline hydrochlorides.  相似文献   

4.
Bromination of the alkaloid 2,3-tetramethylene-3,4-dihydroquinazoline by N-bromosuccinimide was studied. It was shown that either 4-hydroxy-2,3-tetramethylene-3,4-dihydroquinazoline or 6-bromo-4-hydroxy-2,3tetramethylene-3,4-dihydroquinazoline was formed depending on the ratio of reagents. Oxidation of 2,3tetramethylene-3,4-dihydroquinazoline by KMnO4 produced 4-hydroxy-2,3-tetramethylene-3,4dihydroquinazoline. The crystal structures of 6-bromo-4-hydroxy-2,3-tetramethylene-3,4-dihydroquinazoline and its mixed crystal with 4-hydroxy-2,3-tetramethylene-3,4-dihydroquinazoline were studied by x-ray structure analysis. The enantiomeric molecules in all crystal structures formed associates owing to two opposing OH...N1 H-bonds.  相似文献   

5.
Monosubstituted 5-, 6-, and 8-methoxy-3,4-dihydro-2,3-pentamethylenequinazolones (1–3) have been syntehsized by the condensation of monosubstituted methoxyanthranilic acids with caprolactam. Demethylation with hydrobromic acid gave the corresponding hydroxy compounds [4–6]. When the 6- and 8-methoxy- and 6- and 8-hydroxy-3,4-dihydro-2,3-pentamethylenequinazolones (2, 3, 5, and 6) were reduced with zinc in hydrochloric acid, the corresponding quinazoline derivatives (7–10) were obtained. The melting points of the basis and their hydrochlorides are given. Some features of their UV, mass, and PMR spectra are reported.Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 465–469, July–August, 1986.  相似文献   

6.
Thermal decomposition kinetics of ML2 (M = Ni(II) and Co(II); L = 5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)hydrazono)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione) complexes were investigated by thermogravimetric analysis (TGA). The first decomposition process of the NiL2 and CoL2 complexes occurs in the temperature range of 320–350 °C. Kinetics parameters corresponding to this step, such as activation energy, Eα, and apparent pre-exponential factor, ln Aaap, were calculated from the thermogravimetric data at the heating rates of 5, 10, 15 and 20 K min−1 by differential (Friedman's equation) and integral (Flynn–Wall–Ozawa's equation) methods. The results show that the activation energy evidently depends on the extent of conversion. As far as their activation energy is concerned, NiL2 complex shows a higher thermal stability than the CoL2 complex.  相似文献   

7.
Mononuclear, binuclear NiII and heterobinuclear ZnIINiII complexes have been derived from lateral macrobicyclic tricompartmental ligands embracing three different donor sets: (i) O2N2-donor set, derived from ether oxygens and tertiary amine nitrogens; (ii) N2O2-donor set, derived from tertiary amine nitrogens and phenolic oxygens; (iii) O2N2-donor set, derived from phenolic oxygens and azomethine nitrogens. Cyclic voltammograms of the mononuclear NiII complexes showed irreversible one-electron reduction processes in the –1.2 to –1.3 V region and an irreversible oxidation process in the range +0.8 V potential region. The binuclear complexes showed quasireversible two-step single electron reduction processes around the –1.3 and –1.7 V potential regions. The anodic potential region showed an irreversible oxidation process at +1.0 V. The heterobinuclear ZnIINiII complex showed an irreversible reduction of the NiII species at –1.55 V. The catalytic hydrolysis towards 4-nitrophenyl phosphate by the mononuclear, binuclear NiII complexes and the heterobinuclear complex were found to be appreciable. The pseudo-first order rate constant for the catalytic hydrolysis catalyzed by the binuclear and heterobinuclear complexes were found to be higher (9.8 × 10–4 s–1) than that of the corresponding mononuclear complexes (1.3 × 10–5 s–1), which ascertain the requirement of two metal ions in close proximity for the binding of the nucleophilic OH and the phosphate group.  相似文献   

8.
Transformation products of the cationic rhodium complex [(1,5-COD)Rh(—)R,R-DIOP]+CF3SO3 (1) (COD is cycloocta-1,5-diene and DIOP is (±)-2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane), which were obtained in its reactions with molecular hydrogen, base (NEt3), and solvents in the absence of a substrate, were investigated by 1H and 31P NMR spectroscopy. The solvate complexes [(Solv)2Rh(—)R,R-DIOP]+CF3SO3 , which were generated from complex 1 in its reaction with molecular hydrogen, underwent destruction of the diphosphine ligand with elimination of benzene and were subjected to oxidation by traces of moisture and oxygen to form the DIOP dioxide complex with RhI. In the absence of hydrogen, complex 1 in solutions produced the diphosphine dioxide rhodium(i) complex and mono- and binuclear rhodium(i) solvate complexes. The scheme of deactivation of the complex in the absence of the substrate was proposed. The catalytic activity of the solvate complexes [(ArH)Rh(—)R,R-DIOP]+CF3SO3 , which contain benzene, p-xylene, and mesitylene in the coordination sphere, was studied in hydrogenation of Z--acetamidocinnamic acid.  相似文献   

9.
Summary Bis(acetylacetonato)VOII,–CoII,–NiII,–CuII,–ZnII, –UO 2 II and tris(acetylacetonato)FeIII react with benzohydroxamic acid to yield the corresponding mixed ligand complexes as a result of displacement of one acetylacetone molecule. Intermolecular association may be the reason for six-coordination geometry around the metal ions. A t.g.a. study of the complexes shows, in most cases, initial loss of alcohol and water molecules associated with the complexes; subsequent decomposition steps are characterised by very sharp weight loss. The photochemical stability of the complexes has been studied. Intraligand excitation causes a decomposition in the case of FeIII and VOII-complexes but no detectable effect for CoII, NiII, CuII, ZnII, or UO 2 II -complexes.  相似文献   

10.
Summary The synthesis and study of a number of new iron(III) complexes of the ligands 3-hydroxy-2(1H)-pyridinone (3,2-opoH), 2,3-dihydroxybenzoic acid (2,3-dhbH3) and 3,4-dihydroxybenzoic acid (3,4-dhbH3) are described. These complexes have the formulae [Fe(3,2-opo)2Cl]·PrnOH, K[Fe(2,3-dhbH)2(H2O)2], [Fe(2,3-dhb)(H2O)2], K[Fe-(3,4-dhbH)2(H2O)2], [Fe(3,4-dhb)(H2O)2] and K6[Fe(3,4-dhb)3]·3H2O. The complexes were characterized by elemental analyses. X-ray powder patterns, t.g.a./d.t.g. techniques, magnetic susceptibilities and spectroscopic (u.v.-vis., i.r. and variable-temperature 57Fe-M?ssbauer) studies. Monomeric octahedral structures are assigned for the 1∶2 2,3-dhbH2− complex and the 1:3 3,4-dhb3− compound. Dinuclear and/or oligonuclear structures are tentatively proposed for the remaining complexes in the solid state. In [FeL(H2O)2] (L3− = 2,3-dhb3− or 3,4-dhb3−), iron(III) appears to be 5-coordinate. Both oxygens of 3,2-opo participate in coordination, while the dihydroxybenzoato ligands exhibit various coordination modes, depending mainly on the positions of the hydroxy groups, their anionic charge and the ligand∶metal molar ratio used.  相似文献   

11.
Kurova  V. S.  Ershov  A. Yu.  Ryabov  A. D. 《Russian Chemical Bulletin》2001,50(10):1849-1854
The redox potentials of the cis-[Ru(LL)2XY]n+ complexes (LL = 2,2"-bipyridyl (bpy), 1,10-phenanthroline (phen), and 4,4"-dimethyl-2,2"-bipyridyl (Me2bpy); X, Y = Cl, Br, CO3 2–, NO2 , SCN, N3 , H2O, and DMSO) in aqueous buffer solutions were measured and analyzed in the framework of the Lever theory on the additivity of contributions of ligands (E L) to the apparent redox potential of the complex (E o"). The complexes manifest the properties of reversible or quasireversible redox systems, whose formal redox potentials lie in the 0.2—0.5 V range. The complexes are efficient electron transfer mediators between the active center of glucose oxidase (GO) from Aspergillus niger and an electrode.  相似文献   

12.
Studies on the catalytic reduction of nitrite on carbon electrodes modified with Co(II) tetra-2,3-pyridinoporphyrazine (CoTppa, 1), N,N′,N′′,N′′′-tetramethyltetra-2,3-pyridinoporphyrazine ([CoTm-2,3-tppa]4+, 2) and Co(II) N,N′,N′′,N′′′-tetramethyltetra-3,4-pyridinoporphyrazine ([CoTm-3,4-tppa]4+, 3) are reported. There is a close correspondence between the proximity of the methyl groups to the porphyrazine ring and the catalytic activity of the porphyrazine complexes. Bulk electrolysis gave ammonia and hydroxylamine as some of the products. The catalytic activity of the cationic complex, 3, towards the detection of low concentrations of nitrite (<10−9 M) in water containing sodium sulfate, was compared with the activities of the anionic cobalt(II) tetrasulfophthalocyanine ([CoTSPc]4−, 4) and the mixed [CoIITm-3,4-tppa]4+·[CoTSPc]4− (5) complexes. Complex 5 showed the best catalytic activity of the three in that large currents were obtained for very low concentrations of nitrite.  相似文献   

13.
Summary Salts of the anions [SnX5], [SnX4Cl, [SnX3Cl2], [SnX3], [PbX3], [SbX4], [SbX3Cl], [SbX2Cl2], [BiX4], [AuCl2], [AuX2], [AuXCl], [AuX4], [Au2X6]2– and [PtX4]2–, where X = C6F5S, have been isolated and characterised. The neutral SbX3 and BiX3 species, have also been isolated and shown to be pyramidal monomers (19F.n.m.r., i.r., and Raman spectral evidence). Various physical properties of the complexes prepared, as well as their stereochemistries (where these could be ascertained), are similar to those of the known corresponding halogeno compounds of these elements. These results further demonstrate the pseudo-halide nature of the pentafluorothiophenoxide ion.Author to whom all correspondence should be directed at: Laboratoire de Chimie de Coordination, Uniyersité Louis Pasteur, 67008 Strasbourg, France.  相似文献   

14.
Summary Bis(1-pyrazolyl)methane, H2Cbpz, and bis(3-methylpyrazolyl)propane, Me2Cbmpz, react with cobalt(II) salts to give the solid complexes: [Co(H2Cbpz)2X2] ·2H2O (X=Cl, Br, I, NO 3 or ClO 4 ) and [Co(Me2-Cbmpz)X2] (X=Cl, Br, or I), which were isolated and characterised by elemental analysis, i.r. and electronic spectra and conductance measurements. From spectral data, octahedral and tetrahedral structures have been proposed for the H2Cbpz and Me2Cbmpz complexes respectively. The molar conductance of the complexes indicates that they are non-ionic.  相似文献   

15.
New 3,4:9,10-dibenzo-2,11-dihydroxy-1,12-bispiperazine-5,8-dioxododecane complexes [C24H36N4O6Cu] (1), [C24H32N4O4Zn] (2) have been synthesized and characterized by elemental analysis, IR, NMR, Mass, EPR, UV–vis spectroscopy and molar conductance measurements. The complexes are non-ionic in nature and possess octahedral geometry around Cu2+, Zn2+ central metal ions. The binding studies of 1 and 2 with calf thymus DNA (CT-DNA) were investigated by UV–vis, fluorescence, cyclic voltammetery and viscosity measurements. The calculated binding constant Kb for 1 and 2 obtained from UV–vis absorption studies was 7.6 × 103 M−1, 80.8 × 104 M−1, respectively. The intrinsic binding constants were also estimated to be 7.0 × 104 M−1 and 7.53 × 105 M−1 for 1 and 2, respectively by using emission titrations. These experimental results suggest that complexes are groove binders and interact to CT-DNA with different affinities. Both the complexes in presence and absence of CT-DNA show quasireversible wave corresponding to CuII/CuI and ZnII/ZnI redox couple. The changes in E1/2, ΔE, Ipa/Ipc ascertain the interaction of 1 and 2 with CT-DNA. Further, decrease in viscosity of CT-DNA with increasing concentration of complexes was observed. In vitro, antimicrobial activity against fungi A. brassicicola, A. niger and bacteria E. coli, P. aeruginosa of complexes were carried out, which indicate that complex 2 is more active against both fungal and bacterial strains as shown by % inhibition data.  相似文献   

16.
The formation of 2-aminoacetamide from ammonia and glycine and N-glycylglycine from two glycine molecules with and without Mg2+, Cu2+, and Zn2+ cations as catalysts have been studied as model reactions for peptide bond formation using the B3LYP functional with 6–311+G(d,p) and 6–31G(d) basis sets. The B3LYP method was also used to characterize the nine gas–phase complexes of neutral glycine, its amide (2-aminoacetamide), and N-glycylglycine with Lewis acids Mg2+, Cu2+, and Zn2+, respectively. Further, the gas-phase hydration of metal-coordinated complexes of glycine, 2-aminoacetamide, and N-glycylglycine was also investigated. Finally, the effect of water on the structure and reactivity of the metal coordinated complexes was determined. Enthalpies and Gibbs energies for the stationary points of each reaction have been calculated to determine the thermodynamics of the reactions investigated. A substantial decrease in reaction enthalpies and Gibbs energies was found for glycine–ammonia and glycine–glycine reactions coordinated by Mg2+, Cu2+, and Zn2+ ions compared to those of the uncoordinated 2-aminoacetamide bond formation. The formation of a dipeptide is a more exothermic process than the creation of simple 2-aminoacetamide from glycine. The energetic effect of the transition metal ions Cu2+ and Zn2+ is of similar strength and more pronounced than that of the Mg2+ cation. The basicity order of the amides investigated shows the order: NH2CH2CO2H < NH2CH2CONH2 < NH2CH2CONHCH2CO2H. Interaction enthalpies and Gibbs energies of metal ion–amide complexes increase as Mg2+2+2+. In both reactant (glycine) and reaction products (2-aminoacetamide, N-glycylglycine) dihydration caused considerable reduction (about 200–500 kJ-mol–1) of the strength of the bifurcated metal–amide bonds. Solvent effects also reduce the reaction enthalpy and Gibbs energy of reactions under study.  相似文献   

17.
The [M(HL)2(H2O)2]X2 complexes were synthesized (M = Mn(II), Co(II), Ni(II), Cu(II), Zn; X = CH3COO, Cl, BF4 ) that incorporate bidentately coordinated molecules of N,N-dimethylhydrazide of 4-nitrobenzoic acid (HL). The latter molecules chelate the metal atom through the carbonyl O atom and the N atom of dimethylamino group. The square-planar complexes of Cu and Ni with deprotonated form of a ligand with composition ML2 were also isolated. The synthesized complexes were studied by IR, electronic and EPR spectroscopies, and by cyclic voltammetry.  相似文献   

18.
Summary Five Cu(II), Pd(II), Cd(II), Pt(IV), and Au(III) complexes of 6-chloropurine have been obtained. The complexes were characterized by elemental analysis, IR,1H-NMR and13C-NMR spectroscopy. On the basis of these data the structure of the complexes and the coordination of the ligand have been proposed. Thus, the physical and chemical methods supported evidence that in acidic medium, with exception of the Cu(II) complex, 6-chloropurine acts in the monoprotonated form neutralizing the charge of [PdCl4]2–, [CdCl4]2–, [AuCl4] and [PtCl6]2– anions. The thermal behaviour of the complexes has also been studied.
Metallkomplexe von 6-Chlorpurin
Zusammenfassung Es wurden fünf Komplexe von 6-Chlorpurin mit Cu(II), Pd(II), Cd(II), Pt(IV) und Au(III) erhalten. Die Komplexe wurden mittels Elementaranalysen, IR,1H-NMR und13C-NMR charakterisiert. Auf der Basis dieser Daten wurde eine Komplexstruktur und eine bestimmte Koordination der Liganden vorgeschlagen. Physikalische und chemische Methoden beweisen, daß im sauren Bereich [mit der Ausnahme von Cu(II)] das 6-Chlorpurin in der monoprotonierten Form koordiniert, wobei die Ladung von [PdCl4]2–, [CdCl4]2–, [AuCl4] und [PtCl6]2– jeweils neutralisiert wird. Das thermische Verhalten der Komplexe wurde ebenfalls untersucht.
  相似文献   

19.
Summary Copper(II) complexes of isobutyl methyl ketone semicarbazone have been prepared and characterised by magnetic moments, i.r., electronic and e.s.r. spectral studies. The complexes were found to have CuL2X2 and CuL2X2 · 2H2O compositions. The electronic and e.s.r. spectra suggest a five-coordinated trigonal bipyramidal geometry, for the CuL2X2 complexes, (X=Cl, Br, NO 3 , and 1/2 SO 4 2– ) and six-coordinate octahedral geometry has been suggested for CuL2X2 · 2H2O (X=Cl, Br, NO 3 , SO 4 2– ).  相似文献   

20.
Summary Complexes of the general formula [Pt(SS) (NN)], where SS is dddt (5,6-dihydro-1,4-dithiin-2,3-dithiolate) or pddt (6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate) and NN is bipy (2,2-bipyridine) or phen (1,10-phenanthroline), were prepared by the reaction of [PtCl2(NN)] with dithiolate ligands. The1H-n.m.r. spectra shows upfield shifts in the bipy or phen signals upon substitution of the chlorides in [PtCl2(bipy)] or [PtCl2(phen)] by dddt or pddt. The u.v.-vis. spectra exhibits intense intramolecular ligand-to-ligand charge transfer bands ca. 600 nm. Cyclic voltammograms show a reversible oxidation step, assigned to [Pt(SS) (NN)]0/[Pt(SS)(NN)]+. When the complexes were partially oxidized by I2, two broad e.s.r. signals atg = 1.91,g = 2.02 appeared. Raman spectra show the presence of I 3 and I5/– in the iodine-doped complexes. The electrical conductivities of the neutral mixed ligand complexes (10–9-10–10S cm–1) are raised to 10–7–10–8S cm–1 by I2 doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号