首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
A commercial carbon black with microporous framework is used as carbon matrix to prepare sulfur/microporous carbon (S/MC) composites for the cathode of lithium sulfur (Li-S) battery. The S/MC composites with 50, 60, and 72 wt.% sulfur loading are prepared by a facile heat treatment method. Electrochemical performance of the as-prepared S/MC composites are measured by galvanostatic charge/discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), with carbonate-based electrolyte of 1.0 M LiPF6/(PC-EC-DEC). The composite with 50 wt.% sulfur presents the optimized electrochemical performance, including the utilization of active sulfur, discharge capacity, and cycling stability. At the current density of 50 mA g?1, it can demonstrate a high initial discharge capacity of 1624.5 mAh g?1. Even at the current density of 800 mA g?1, the initial capacity of 1288.6 mAh g?1 can be obtained, and the capacity can still maintain at 522.8 mAh g?1 after 180 cycles. The remarkably improved electrochemical performance of the S/MC composite with 50 wt.% sulfur are attributed to the carbon matrix with microporous structure, which can effectively enhance the electrical conductivity of the sulfur cathode, suppress the loss of active material during charge/discharge processes, and restrain the migration of polysulfide ions to the lithium anode.  相似文献   

2.
A three-dimensional nitrogen-doped graphene/sulfur composite (NGS3) was synthesized by a simple hydrothermal method using urea as the nitrogen source and subsequent thermal treatment. The structure and electrochemical performance of the prepared nitrogen-doped graphene/sulfur composite (NGS3) were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Energy dispersive spectroscopy mapping (EDS), and galvanostatic charge/discharge measurements. SEM and EDS mapping show that NGS3 exhibits a porous structure with uniform distribution of sulfur. Compared with the graphene/sulfur composite (NGS1), NGS3 delivers an outstanding rate capability with 1501, 1278, 1136, and 1024 mAh g?1 at 200, 400, 800, and 1000 mA g?1, respectively, and the cycle stability of NGS3 is also wonderful, a reversible discharge capacity of 1330 mAh g?1 is obtained after 80 cycles under the current rate of 200 mA g?1. The wonderful electrochemical performance could be attributed to the special three-dimensional conductive structure with the help of nitrogen atom.  相似文献   

3.
Md. Arafat Rahman  Cuie Wen 《Ionics》2015,21(10):2709-2723
Nanogravel structured NiO/Ni electrodes were fabricated by using two-step thermal oxidation method of commercial nickel (Ni) foam in air for lithium-ion batteries (LIBs). The macro- and micro-structures of the NiO/Ni foam were characterized using X-ray diffraction (XRD), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), and Raman spectroscopy. Galvanostatic tests revealed that the electrode exhibits no obvious capacity fading over 40 cycles at 1 C (718 mAg?1) and 2.5 C (1.8 Ag?1) current rate. The discharge capacity was higher than the theoretical capacity of NiO even at a high-current rate of 2.5 C. The electrodes can deliver a reversible capacity of 1116.65 mAh g?1 after 20th cycle at 1 C rate and 1026.20 mAh g?1 after 40th cycle at 2.5 C rate. The cyclic voltammograms and impedance spectra analysis indicated that a redox reaction of NiO–Ni0 with formation and decomposition of Li2O. The excellent electrochemical performance is mainly attributed to the nanogravel structure of the NiO/Ni foam electrodes as well as its excellent electrical contact between NiO and Ni. The unique nanostructured NiO on the highly conductive metallic Ni in core resulted in the enhanced discharge capacity, coulombic efficiency, cyclic stability, and rate capability when utilized as negative electrodes in LIBs.  相似文献   

4.
In this paper, we report a facile method to prepare a twins-structural Sn@C core–shell composite that is used as anode materials for lithium-ion batteries. Its surface morphology and microstructures were characterized by the scanning electron microscope, X-ray diffraction, and transmission electron microscope. The electrochemical performances of Sn@C were measured by charge–discharge tests, cyclic voltammogram, and electrochemical impedance spectra. It is shown that such a composite exhibits a high initial specific capacity of 970 mA h g?1 and a capacity retention of 400 mA h g?1 after 50 cycles at the current density of 100 mA g?1.  相似文献   

5.
MnO2/graphite electrode material is successfully synthesized by electrodeposition under supergravity field from manganese acetate and graphite suspending solution. X-ray diffraction and field emission scanning electron microscopy show that the obtained composite is γ-MnO2/graphite. The process of depositing the MnO2/graphite was shown by the schematic illustration. Galvanostatic charge/discharge and cyclic voltammograms tests are applied to investigate electrochemical performances of the composite electrodes prepared under supergravity fields. MnO2/graphite synthesized under supergravity field exhibits good discharge capacitance and the specific capacitance is 367.77 F g?1 at current density of 0.5 A g?1. It is found that supergravity field has effects on the electrochemical performances of MnO2/graphite material.  相似文献   

6.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

7.
In this work, a novel activated carbon containing graphene composite was developed using a fast, simple, and green ultrasonic-assisted method. Graphene is more likely a framework which provides support for activated carbon (AC) particles to form hierarchical microstructure of carbon composite. Scanning electron microscope (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area measurement, thermogravimetric analysis (TGA), Raman spectra analysis, XRD, and XPS were used to analyze the morphology and surface structure of the composite. The electrochemical properties of the supercapacitor electrode based on the as-prepared carbon composite were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), charge/discharge, and cycling performance measurements. It exhibited better electrochemical performance including higher specific capacitance (284 F g?1 at a current density of 0.5 A g?1), better rate behavior (70.7% retention), and more stable cycling performance (no capacitance fading even after 2000 cycles). It is easier for us to find that the composite produced by our method was superior to pristine AC in terms of electrochemical performance due to the unique conductive network between graphene and AC.  相似文献   

8.
Lithium-sulfur batteries have a poor cyclability and inferior rate capability due to the shuttle effect of lithium polysulfides. To solve these problems, a sulfur-coated MWCNT composite (S/MWCNT) was coated with conductive polypyrrole (PPy) to trap the polysulfides and facilitate charge and lithium ion transport. From the contact angle measurement, it is found that the PPy coating improves the wettability of the S/MWCNT composite. Compared with the bare S/MWCNT composite, the PPy-coated S/MWCNT composite cathode exhibited improved cycle stability and high-rate performance. A reversible discharge capacity of 671 mAh g?1 was maintained after 50 cycles at 3 C for the PPy-coated composite. The effect of PPy coating on kinetic property was investigated by electrochemical impedance spectroscopy (EIS). The electrolyte resistance, surface film resistance, charge transfer resistance, lithium ion diffusion coefficient, and exchange current density were evaluated from the EIS measurements. The EIS results reveal that the PPy coating increases both Li ion diffusion into the cathode and exchange current density. The as-prepared PPy-coated S/MWCNT composite can be considered to be a promising candidate for high capacity and high-rate performance cathode material.  相似文献   

9.
Composite electrodes based on the nitroxide free radical-contained pyrrole copolymer (PPy-co-PPy-C-TEMPO) as active material were one-step synthesized by in situ electrochemical polymerization, which was then directly applied as the cathode of lithium ion batteries. The structure, morphology, electrochemical property, and charge-discharge performances of prepared copolymers were characterized by FTIR, SEM, cyclic voltammogram, electrochemical impedance spectroscopy, and galvanostatic charge-discharge testing, respectively. The results demonstrated that PPy-co-PPy-C-TEMPO-based composite cathodes have been successfully prepared by in situ electrochemical method, and the introduction of the nitroxide free radical (TEMPO) could obviously affect the morphology and electrochemical characteristics of the obtained electroactive polymers. And the charge/discharge tests showed that with the introduction of the TEMPO, PPy-co-PPy-C-TEMPO-based composite cathodes exhibited an improved specific capacity of 70.9 mAh g?1 for PPy-co-PPy-C-TEMPO (4:1) and 62.6 mAh g?1 for PPy-co-PPy-C-TEMPO (8:1) as measured at 20 mA g?1 between 2.5 and 4.2 V, which were remarkably higher than that of the pure PPy cathode of 41.0 mAh g?1 under the same experimental conditions. Also, the obtained PPy-co-PPy-C-TEMPO copolymers demonstrated an acceptable cycling stability during the charge-discharge process. These obtained cell performances for the composite cathodes were attributed to the application of the in situ electrochemical polymerization technology, which enhanced the intimate integration between conductive polymer film and electrode. Furthermore, the introduction of TEMPO-contained pyrrole (Py-C-TEMPO) improved the morphology of the composite cathode, which was in favor of the utilization of active materials and the improved electrochemical performances.  相似文献   

10.
Nickel-cobalt binary oxide/reduced graphene oxide (G-NCO) composite with high capacitance is synthesized via a mild method for electrochemical capacitors. G-NCO takes advantages of reduced graphene oxide (RGO) and nickel-cobalt binary oxide. As an appropriate matrix, RGO is beneficial to form homogeneous structure and improve the electron transport ability. The binary oxide owns more active sites than those of nickel oxide and cobalt oxide to promote the redox reaction. Attributed to the well crystallinity, homogeneous structure, increased active sites, and improved charge transfer property, the G-NCO composite exhibits highly enhanced electrochemical performance compared with G-NiO and G-Co3O4 composites. The specific capacitance of the G-NCO composite is about 1750 F g?1 at 1 A g?1 together with capacitance retention of 79 % (900/1138 F g?1) over 10,000 cycles at 4 A g?1. To research its practical application, an asymmetric supercapacitor with G-NCO as positive electrode and activated carbon as negative electrode was fabricated. The asymmetric device exhibits a prominent energy density of 37.7 Wh kg?1 at a power density of 800 W kg?1. The modified G-NCO composite shows great potential for high-capacity energy storage.  相似文献   

11.
A new cathode material for lithium ion battery FeF3?·?0.33H2O/C was synthesized successfully by a simple one-step chemico-mechanical method. It showed a noticeable initial discharge capacity of 233.9 mAh g?1 and corresponding charge capacity of 186.4 mAh g?1. A reversible capacity of ca.157.4 mAh g?1 at 20 mA g?1 can be obtained after 50 charge/discharge cycles. To elucidate the lithium ion transportation in the cathode material, the methods of electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) were applied to obtain the lithium diffusion coefficients of the material. Within the voltage level of 2.05–3.18 V, the method of EIS showed that \( {D}_{{\mathrm{Li}}^{+}} \) varied in the range of 1.2?×?10?13?~?3.6?×?10?14 cm2 s?1 with a maximum of 1.2?×?10?13 cm2 s?1 at 2.5 V. The method of GITT gave a result of 8.1?×?10?14?~?1.2?×?10?15 cm2 s?1. The way and the range of the variation for lithium ion diffusion coefficients measured by the GITT method show close similarity with those obtained by the EIS method. Besides, they both reached their maximum at a voltage level of 2.5 V.  相似文献   

12.
The carbon substrate with unique 3D macroporous structure has been prepared through the immediate carbonization of ethylenediaminetetraacetic acid (EDTA) and KOH mixture. The porous carbon composed of micro- and small mesoporous (2–5 nm) structure has a BET specific surface area of 1824.8 m2 g?1. The amorphous and nanosized Se is uniformly encapsulated into the porous structure of porous carbon using melting diffusion route, and the weight content of Se in target Se/C composite can be as high as ~50 %. As an Li–Se battery cathode, the Se/C composite delivers a reversible (2nd) discharge capacity of 597.4 mAh g?1 at 0.24C and retains a discharge capacity of 538.4 mAh g?1 at 0.24C after 100 cycles. Furthermore, the composite also has a stable capacity of 291.0 mAh g?1 at a high current of 4.8C. The high specific area and good porous size of EDTA-derived carbon substrate may a be responsibility for the excellent electrochemical performances of Se/C composite.  相似文献   

13.
Mg-doped-LMR-NMC (Li1.2Ni0.15-xMgxMn0.55Co0.1 O2) is synthesized by combustion method followed by fluorine doping by solid-state synthesis. In this approach, we substituted the Ni2+ by Mg2+ in varying mole percentages (x = 0.02, 0.05, 0.08) and partly oxygen by fluorine (LiF: LMR-NMC = 1:50 wt%). The synergistic effect of both magnesium and fluorine substitution on electrochemical performance of LMR-NMC is studied by electrochemical impedance spectroscopy and galvanostatic-charge-discharge cycling. Mg-F-doped LMR-NMC (Mg 0.02 mol) composite cathodes shows excellent discharge capacity of ~300 mAh g?1 at C/20 rate whereas pristine LMR-NMC shows the initial capacity around 250 mAh g?1 in the voltage range between 2.5 and 4.7 V. Mg-F-doped LMR-NMC shows lesser Ohmic and charge transfer resistance, cycles well, and delivers a stable high capacity of ~280 mAh g?1 at C/10 rate. The voltage decay which is the major issue of LMR-NMC is minimized in Mg-F-doped LMR-NMC compared to pristine LMR-NMC.  相似文献   

14.
Yan Lin  Jianbo Wu  Weiping Chen 《Ionics》2013,19(2):227-234
LiFePO4/C was prepared by a modified aqueous sol–gel route developed by incorporating an additional ball-milling step where the dry gel was milled with the additives of synthetic graphite and carbon black. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), high resolution TEM (HRTEM) and elemental analysis. Results showed that the LiFePO4/C synthesized by suitable ball-milling process had pure, fine and homogenous LiFePO4 particles. Results of cyclic voltammetry and charge/discharge plateaus demonstrated that the LiFePO4/C composite synthesized by milling for 2 h had much better electrochemical kinetics. High performances were achieved with its discharge capacities of 157 mA h g?1 at 0.1?C and 133 mA h g?1 at 1?C between 2.5 and 4.2 V (1?C?=?170 mA g?1). And no obvious capacity fading was observed upon cycling. The simple and convenient synthesis route is promising for large-scale production of LiFePO4/C.  相似文献   

15.
Hexagonal β-Ni(OH)2 nanosheets with thickness of ~12 nm were synthesized by a hydrothermal method at 150 °C using nickel chloride as nickel source and morpholine as alkaline. Electrodes for application in pseudocapacitor were assembled through a traditional technique: pressing a mixture of β-Ni(OH)2 nanosheets and acetylene black onto nickel foam. Due to the hexagonal shape of rigid β-Ni(OH)2 nanosheet and the mediation of surface-modified glycerol during electrochemical charge–discharge cycles, a nanostructure of electrode material with facile interior pathway for the transfer of electrolyte was formed. As a result, the as-formed electrodes presented high specific capacitance of 1,917 F g?1 at current density of 1.6 A g?1 in 3 mol L?1 KOH solution. At high charge and discharge current density of 31.3 A g?1, the electrodes still remained a high specific capacitance of 1,289 F g?1. The interesting results obtained from this investigation may provide a new insight for the synthesis of electrode materials with high electrochemical performance.  相似文献   

16.
Three-dimensional (3-D) porous copper with stable pore structure is prepared by electroless plating. 3-D porous Sn–Co alloy/carbon nanotube (CNT) composite is synthesized by electrodeposition using 3-D porous copper as the substrate. The scanning electron microscope results indicate that 3-D porous Sn–Co alloy/CNT composite contains a large amount of interconnected pores with the diameter size of ~3 μm. Upon cycling, the pore structure gradually disappears, but no serious exfoliation appears due to porous structure and reinforcement by CNT. The charge/discharge results demonstrate that the 3-D porous Sn–Co alloy/CNT composite electrode delivers high first reversible specific capacity of 490 mAh g?1, and remains 441 mAh g?1 after 60 cycles tested at different current densities. Even at the current density of 3,200 mA g?1, the reversible specific capacity remains 319 mAh g?1, which is 65 % of the first specific capacity cycled at the current density of 100 mA g?1.  相似文献   

17.
Nitrogen-doped carbon nanofiber (NCNF) decorated LiFePO4 (LFP) composites are synthesized via an in situ hydrothermal growth method. Electrochemical performance results show that the embedded NCNF can improve electron and ion transfer, thereby resulting in excellent cycling performance. The as-prepared LFP and NCNF composites exhibit excellent electrochemical properties with discharge capacities of 188.9 mAh g?1 (at 0.2 C) maintained at 167.9 mAh g?1 even after 200 charge/discharge cycles. The electrode also presents a good rate capability of 10 C and a reversible specific capacity as high as 95.7 mAh g?1. LFP composites are a potential alternative high-performing anode material for lithium ion batteries.  相似文献   

18.
The Li3V2(PO4)3/reduced graphene oxide (LVP/rGO) composite is successfully synthesized by a conventional solid-state reaction with a high yield of 10 g, which is suitable for large-scale production. Its structure and physicochemical properties are investigated using X-ray diffraction, Raman spectra, field-emission scanning electron microscopy, transmission electron microscopy, and electrochemical methods. The rGO content is as low as ~3 wt%, and LVP particles are strongly adhered to the surface of the rGO layer and/or enwrapped into the rGO sheets, which can facilitate the fast charge transfer within the whole electrode and to the current collector. The galvanostatic charge–discharge tests show that the LVP/rGO electrode delivers an initial discharge capacity of 177 mAh g?1 at 0.5 C with capacity retention of 88 % during the 50th cycle in a wide voltage range of 3.0–4.8 V. A superior rate capability is also achieved, e.g., exhibiting discharge capacities of 137 and 117 mAh g?1 during the 50th cycle at high C rates of 2 and 5 C, respectively.  相似文献   

19.
Hollow Sn-Co nanospheres have been fabricated by galvanic replacement reaction. In particular, the hollow resultants with different shell thickness and void space can be obtained using sacrificial templates with different sizes. The structural evolution of Sn-Co hollow microspheres and structure changes during charge/discharge process were studied using XRD, SEM, and TEM. As an anodic material, the hollow resultants with thin shell and relatively large void space exhibited a good reversible capacity of 502 mAh g?1 at a current density of 100 mA g?1 and a coulomb efficiency over 99 % after 100 cycles. The contributions of the hollow structure and the inactive Co element to electrochemical performance were verified by galvanostatic charge/discharge cycling, electrochemical impedance spectroscope, and TEM measurements. A possible mechanism for hollow structure with different shell thickness to alleviate the volume change was proposed.  相似文献   

20.
Flower-like MoS2 supported on three-dimensional graphene aerogel (MoS2/GA) composite has been prepared by a facile hydrothermal method followed by subsequent heat-treatment process. Each of MoS2 microflowers is surrounded by the three-dimensional graphene nanosheets. The MoS2/GA composite is applied as an anode material of sodium-ion batteries (SIBs) and it exhibits high initial discharge/charge capacities of 562.7 and 460 mAh g?1 at a current density of 0.1 A g?1 and good cycling performance (348.6 mAh g?1 after 30 cycles at 0.1 A g?1). The good Na+ storage properties of the MoS2/GA composite could be attributed to the unique structure which flower-like MoS2 are homogeneously and tightly decorated on the surface of three-dimensional graphene aerogel. Our results demonstrate that as-prepared MoS2/GA composite has a great potential prospect as anodes for SIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号