首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
本文涉及Runge-Kutta 法变步长求解非线性中立型泛函微分方程(NFDEs) 的稳定性和收敛性.为此, 基于Volterra 泛函微分方程Runge-Kutta 方法的B- 理论, 引入了中立型泛函微分方程Runge-Kutta 方法的EB (expanded B-theory)-稳定性和EB-收敛性概念. 之后获得了Runge-Kutta 方法变步长求解此类方程的EB - 稳定性和EB- 收敛性. 这些结果对中立型延迟微分方程和中立型延迟积分微分方程也是新的.  相似文献   

2.
张诚坚  金杰 《计算数学》2007,29(4):391-402
本文研究了求解刚性多滞量积分微分方程的Runge-Kutta方法的非线性稳定性和计算有效性.经典Runge—Kutta方法连同复合求积公式和Pouzet求积公式被改造用于求解一类刚性多滞量Volterra型积分微分方程.其分析导出了:在适当条件下,扩展的Runge-Kutta方法是渐近稳定和整体稳定的.此外,数值试验表明所给出的方法是高度有效的.  相似文献   

3.
In this paper, we study the preservation of quadratic conservation laws of Runge-Kutta methods and partitioned Runge-Kutta methods for Hamiltonian PDEs and establish the relation between multi-symplecticity of Runge-Kutta method and its quadratic conservation laws. For Schrödinger equations and Dirac equations, it reveals that multi-symplectic Runge-Kutta methods applied to equations with appropriate boundary conditions can preserve the global norm conservation and the global charge conservation, respectively.  相似文献   

4.
Implicit Runge-Kutta methods are known as highly accurate and stable methods for solving differential equations. However, the iteration technique used to solve implicit Runge-Kutta methods requires a lot of computational efforts. To lessen the computational effort, one can iterate simultaneously at a number of points along the t-axis. In this paper, we extend the PDIRK (Parallel Diagonal Iterated Runge-Kutta) methods to delay differential equations (DDEs). We give the region of convergence and analyze the speed of convergence in three parts for the P-stability region of the Runge-Kutta corrector. It is proved that PDIRK methods to DDEs are efficient, and the diagonal matrix D of the PDIRK methods for DDES can be selected in the same way as for ordinary differential equations (ODEs).  相似文献   

5.
In this paper we consider Runge-Kutta methods for jump-diffusion differential equations. We present a study of their mean-square convergence properties for problems with multiplicative noise. We are concerned with two classes of Runge-Kutta methods. First, we analyse schemes where the drift is approximated by a Runge-Kutta ansatz and the diffusion and jump part by a Maruyama term and second we discuss improved methods where mixed stochastic integrals are incorporated in the approximation of the next time step as well as the stage values of the Runge-Kutta ansatz for the drift. The second class of methods are specifically developed to improve the accuracy behaviour of problems with small noise. We present results showing when the implicit stochastic equations defining the stage values of the Runge-Kutta methods are uniquely solvable. Finally, simulation results illustrate the theoretical findings.  相似文献   

6.
In recent time, Runge-Kutta methods that integrate special third order ordinary differential equations (ODEs) directly are proposed to address efficiency issues associated with classical Runge-Kutta methods. Albeit, the methods require evaluation of three set of equations to proceed with the numerical integration. In this paper, we propose a class of multistep-like Runge-Kutta methods (hybrid methods), which integrates special third order ODEs directly. The method is completely derivative-free. Algebraic order conditions of the method are derived. Using the order conditions, a four-stage method is presented. Numerical experiment is conducted on some test problems. The method is also applied to a practical problem in Physics and engineering to ascertain its validity. Results from the experiment show that the new method is more accurate and efficient than the classical Runge-Kutta methods and a class of direct Runge-Kutta methods recently designed for special third order ODEs.  相似文献   

7.
In this paper we discuss two-stage diagonally implicit stochastic Runge-Kutta methods with strong order 1.0 for strong solutions of Stratonovich stochastic differential equations. Five stochastic Runge-Kutta methods are presented in this paper. They are an explicit method with a large MS-stability region, a semi-implicit method with minimum principal error coefficients, a semi-implicit method with a large MS-stability region, an implicit method with minimum principal error coefficients and another implicit method. We also consider composite stochastic Runge-Kutta methods which are the combination of semi-implicit Runge-Kutta methods and implicit Runge-Kutta methods. Two composite methods are presented in this paper. Numerical results are reported to compare the convergence properties and stability properties of these stochastic Runge-Kutta methods.  相似文献   

8.
B-stability and B-convergence theories of Runge-Kutta methods for nonlinear stiff Volterra func-tional differential equations(VFDEs)are established which provide unified theoretical foundation for the studyof Runge-Kutta methods when applied to nonlinear stiff initial value problems(IVPs)in ordinary differentialequations(ODEs),delay differential equations(DDEs),integro-differential equatioons(IDEs)and VFDEs of  相似文献   

9.
波动方程的一类显式辛格式   总被引:8,自引:0,他引:8  
孙耿 《计算数学》1997,19(1):1-10
1.引言和预备知识本文主要考虑如下波动方程初边值问题的数值方法.一般的哈密顿系统可写成那么,系统(1.幻称为可分的哈密顿系统.众所周知,方程(1.la)在引进新变量。t=v后,它变成一类可分的线性哈密顿系统:它的哈密顿函数为H一三矿(V“+。乏)咖,并且在离散*。=。。。后,(1.4)是一个方程组,u,V是向量.人们早就知道,初边值问题(1.1)在应用隐式中点公式(辛格式)进行数值解时,能保持真解许多重要性质,并且格式是无条件稳定的,但美中不足的是,在每积分步,它要求解一个线性方程组,当考虑大的离散系统时,…  相似文献   

10.
讨论了一类非线性中立型延迟积分微分方程Runge-Kutta方法的稳定性.在适当的条件下证明了运用Runge-Kutta方法求解这类方程既是数值稳定的也是渐近稳定的.  相似文献   

11.
求解延迟微分代数方程的多步Runge-Kutta方法的渐近稳定性   总被引:4,自引:0,他引:4  
李宏智  李建国 《数学研究》2004,37(3):279-285
延迟微分代数方程(DDAEs)广泛出现于科学与工程应用领域.本文将多步Runge-Kutta方法应用于求解线性常系数延迟微分代数方程,讨论了该方法的渐近稳定性.数值试验表明该方法对求解DDAEs是有效的.  相似文献   

12.
Partitioned adaptive Runge-Kutta methods and their stability   总被引:4,自引:0,他引:4  
Summary This paper deals with the solution of partitioned systems of nonlinear stiff differential equations. Given a differential system, the user may specify some equations to be stiff and others to be nonstiff. For the numerical solution of such a system partitioned adaptive Runge-Kutta methods are studied. Nonstiff equations are integrated by an explicit Runge-Kutta method while an adaptive Runge-Kutta method is used for the stiff part of the system.The paper discusses numerical stability and contractivity as well as the implementation and usage of such compound methods. Test results for three partitioned stiff initial value problems for different tolerances are presented.  相似文献   

13.
New methods are introduced for the time integration of the Fourier and Chebyshev methods of solution for dynamic differential equations. These methods are unconditionally stable, even though no matrix inversions are required. Time steps are chosen by accuracy requirements alone. For the Fourier method both leapfrog and Runge-Kutta methods are considered. For the Chebyshev method only Runge-Kutta schemes are tested. Numerical calculations are presented to verify the analytic results. Applications to the shallow water equations are presented.  相似文献   

14.
B-stability andB-convergence theories of Runge-Kutta methods for nonlinear stiff Volterra functional differential equations (VFDEs) are established which provide unified theoretical foundation for the study of Runge-Kutta methods when applied to nonlinear stiff initial value problems (IVPs) in ordinary differential equations (ODEs), delay differential equations (DDEs), integro-differential equations (IDEs) and VFDEs of other type which appear in practice.  相似文献   

15.
Implicit Runge-Kutta method is highly accurate and stable for stiff initial value prob-lem.But the iteration technique used to solve implicit Runge-Kutta method requires lotsof computational efforts.In this paper,we extend the Parallel Diagonal Iterated Runge-Kutta(PDIRK)methods to delay differential equations(DDEs).We give the convergenceregion of PDIRK methods,and analyze the speed of convergence in three parts for theP-stability region of the Runge-Kutta corrector method.Finally,we analysis the speed-upfactor through a numerical experiment.The results show that the PDIRK methods toDDEs are efficient.  相似文献   

16.
This paper deals with H-stability of Runge-Kutta methods with variable stepsize for the system of pantograph equations. It is shown that both Runge-Kutta methods with nonsingular matrix coefficient A and stiffly accurate Runge-Kutta methods are H-stable if and only if the modulus of stability function at infinity is less than 1.  相似文献   

17.
Runge—Kutta方法的G—正交性   总被引:1,自引:0,他引:1  
1G-正交矩阵微分方程考虑RN×N上常微分矩阵方程初值问题这里W:[0,+∞)×RN×N→RN×N为一光滑的映射,Y(0)RN×N为给定的初值,G为实常正定矩阵.定义1.1如果问题(1.1)的真解y(t)满足YT(t)GY(t)=G,t≥0,则称该问题真解Y(t)是G-正交的,以下简称该问题是G-正交的.特别地,当G=IN时,称该问题是正交的,这里IN为N×N单位降.引理1.1[2]问题(1.1)是正交的当且仅当W(t,Y)=F(t,Y)Y,这里F;[0.+∞)×RN×N→N×N为一反对称矩阵函…  相似文献   

18.
Singly-implicit Runge-Kutta methods are considered to be good candidates for stiff problems because of their good stability and high accuracy. The existing methods, SIRK (Singly-implicit Runge-Kutta), DESI (Diagonally Extendable Singly-implicit Runge-Kutta), ESIRK (Effective order Singly-implicit Rung-Kutta) and DESIRE (Diagonally Extended Singly-implicit Runge-Kutta Effective order) methods have been shown to be efficient for stiff differential equations, especially for high dimensional stiff problems. In this paper, we measure the efficiency for the family of singly-implicit Runge-Kutta methods using the local truncation error produced within one single step and the count of number of operations. Verification of the error and the computational costs for these methods using variable stepsize scheme are presented. We show how the numerical results are effected by the designed factors: additional diagonal-implicit stages and effective order.  相似文献   

19.
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations.We investigate the dissipativity properties of (k,l)algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid.The finitedimensional and infinite-dimensional dissipativity results of (k,l)-algebraically stable Runge-Kutta methods are obtained.  相似文献   

20.
For differential equations with piecewise constant arguments of advanced type, numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the numerical stability region contains the analytic stability region are given. The conditions of oscillations for the Runge-Kutta methods are obtained also. We prove that the Runge-Kutta methods preserve the oscillations of the analytic solution. Moreover, the relationship between stability and oscillations is discussed. Several numerical examples which confirm the results of our analysis are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号