共查询到20条相似文献,搜索用时 0 毫秒
1.
《Solid State Ionics》2006,177(19-25):2065-2069
Novel Ni–Al2O3 cermet-supported tubular SOFC cell was fabricated by thermal spraying. Flame-sprayed Al2O3–Ni cermet coating played dual roles of a support tube and an anode current collector. Y2O3-stabilized ZrO2 (YSZ) electrolyte was deposited by atmospheric plasma spraying (APS) to aim at reducing manufacturing cost. The gas tightness of APS YSZ coating was achieved by post-densification process. The influence of YSZ coating thickness on the performance of SOFC test cell was investigated in order to optimize YSZ thickness in terms of open circuit voltage of the cell and YSZ ohmic loss. It was found that the reduction of YSZ thickness from 100 μm to 40 μm led to the increase of the maximum output power density from 0.47 W/cm2 to 0.76 W/cm2 at 1000 °C. Using an APS 4.5YSZ coating of about 40 μm as the electrolyte, the test cell presented a maximum power output density of over 0.88 W/cm2 at 1030 °C. The results indicate that SOFCs with thin YSZ electrolyte require more effective cathode and anode to improve performance. 相似文献
2.
采用组合材料方法研究了金属Ni膜厚对Ni/SiC接触性质的影响.16个膜厚均为18 nm的Ni/SiC电极具有较为一致的肖特基接触性质;膜厚从10 nm增加到160 nm,肖特基接触的电流-电压(I-V)曲线随膜厚发生显著变化.分析表明这种变化源于膜厚对理想因子n和有效势垒高度ФB的影响.1000℃快速退火后,这些肖特基接触都转变为欧姆接触,Ni2Si是主要的生成物.I-V曲线测
关键词:
碳化硅
肖特基接触
欧姆接触
组合材料方法 相似文献
3.
4.
A cyclic reduction and oxidation of Ni/YSZ-cermet anodes for Solid Oxide Fuel Cells (SOFC) resulted in an increase of the
polarization resistance. Therefore, investigations concerning kinetics of oxidation/reduction and the impact of redox cycles
on the mi-crostructure of Ni/YSZ bulk ceramics were made. The reaction process of the basic system Ni/NiO was compared with
cermet bulk samples and the influence of NiO and YSZ particle sizes and sintering temperatures on kinetics and microstructure
was studied using thermo-gravimetry and dilatometry. The investigations on bulk ceramics indicated that no length change occurred
during reduction, whereas reoxidation led to an increase in the length of the samples which strongly depended on the microstructure.
It was shown that bulk samples sintered at temperatures below 1300 °C can withstand redox cycles much better than those sintered
at higher temperatures. Furthermore, it was found that by decreasing the NiO particle size and using a NiO/YSZ particle size
ratio of aproximately 3:2, a smaller length increase after reoxidation was achieved. An increase of the polarization resistance
could be ascribed to the formation of cracks within the bulk sample which interrupt current paths and therefore reduce the
amount of the active triple phase boundary.
Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15 – 21, 2002. 相似文献
5.
利用传统固相反应方法, 分别在1440℃, 1460℃, 1480℃和1500℃烧结条件下, 制备了钙钛矿结构的La0.1Sr0.9TiO3陶瓷样品. 样品的粉末X射线衍射结果显示, 不同烧结温度的La0.1Sr0.9TiO3 陶瓷样品均为单相的正交结构. 从样品的扫描电子显微照片来看, 随着烧结温度的增加, 平均晶粒尺寸逐渐增大. 在室温至800℃的测试温区, 测试了样品的电阻率和Seebeck系数, 系统地研究了不同烧结温度对样品热电性能的影响. 结果表明, 样品的电阻率在测试温区内随着测试温度的升高先略微降低, 然后逐渐升高;总体来看, 样品的电阻率随烧结温度的升高先增大后降低. 在测试温区内, Seebeck系数均为负值, 表明样品的载流子为电子; 随着测试温度的升高, Seebeck系数绝对值均有所增大;随烧结温度升高, Seebeck系数绝对值逐渐增大后显著降低. 1480℃制备的样品因其相对较低的电阻率和相对较高的Seebeck系数绝对值, 在165℃时得到最大的功率因子21 μW·K-2·cm-1. 相似文献
6.
利用传统的固相反应分别在1250℃,1300℃,1350℃.烧结条件下制备出钙钛矿结构的La0.9Sr0.1FeO3陶瓷样品.样品的XRD粉末衍射结果显示不同烧结温度的La0.9Sr0.1FeO3陶瓷样品都是单相的正交结构,同时晶胞体积随着烧结温度的升高而减小.从样品的SEM结果看出,随着烧结温度的升高,晶粒逐渐变大,并且晶粒间的空隙逐渐减小,样品更加致密.在室温到800℃的
关键词:
铁酸镧陶瓷
热电性能
烧结温度 相似文献
7.
P. Tiberto S. Gupta S. Bianco F. Celegato P. Martino A. Chiolerio A. Tagliaferro P. Allia 《Journal of nanoparticle research》2011,13(1):245-255
The morphological, structural, and magnetic properties of Co and Ni films of different thicknesses grown by RF sputtering on a Si–SiO substrate and submitted to controlled diffusion of atoms on the substrate (de-wetting) are studied through X-ray diffraction (XRD), atomic force microscopy, X-ray photoelectron spectroscopy, and alternating-gradient magnetometry. For both metals, de-wetting treatment leads to the growth of non-percolating, metallic nanoislands characterized by a distribution of sizes and aspect ratios. XRD spectra reveal a polycrystalline multi-component structure evolving by effect of de-wetting and directly affecting the magnetic properties of films. The magnetic response after de-wetting is consistent with the formation of a nanogranular magnetic phase characterized by a complex, thickness-dependent magnetic behavior originating from the simultaneous presence of superparamagnetic and blocked-particle contributions. At intermediate film thickness (around 10 nm), a notable enhancement in magnetic coercivity is observed for both metals with respect to the values measured in precursor films and in their bulk counterparts. 相似文献
8.
《Solid State Ionics》2006,177(5-6):541-547
This work investigated the effect of oxide in Ni-zirconia cermets on the carbon deposition behavior in internal reforming SOFCs. Within 800–1000 °C, carbon deposition was found to decrease with increasing temperature on Ni/ScSZ cermet anodes at a low oxygen / carbon ratio (O / C = 0.03) during anodic oxidation of methane. On the contrary, an opposite trend was observed on Ni/YSZ under the same conditions, consisting with the temperature dependence of carbon deposition predicted by a thermodynamic equilibrium calculation. Results of temperature-programmed-reduction (TPR) of NiO mixed with YSZ or ScSZ indicated that interaction of Ni with ScSZ is stronger than that with YSZ. The stronger interaction was corroborated by observed tendency of inhibiting Ni agglomeration by both BET specific surface area analysis and SEM observation. It was also found that the dependence of CO2 production rate monitored by GC on current density showed a similar dependence trend of the equilibrium CO2 content on O / C ratio. A model in which H2Oad enrichment effects on Ni surface by anodic current depend on the interaction between Ni and the oxide in Ni cermet was proposed to explain the different carbon deposition behaviors between Ni/YSZ and Ni/ScSZ cermets. 相似文献
9.
Nanosized zinc oxide has been synthesized through a novel single step solution combustion route using citric acid as fuel. The X-ray diffraction (XRD) analysis revealed that the synthesized ZnO nanopowder has the pure wurtzite structure. The phase purity of the nanopowder has been confirmed using differential thermal analysis (DTA), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The morphology and crystalline size of the as-prepared nanopowder characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the powder consisted of a mixture of nanoparticles and nanorods. The nanocrystalline ZnO could be sintered to ∼97% of the theoretical density at 1200 °C in 4 h. The dielectric constant (εr) and dielectric loss (εi) of sintered ZnO pellets at 5 MHz were 1.38 and 9×10−2, respectively, at room temperature. 相似文献
10.
11.
High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayer (ML) up to 600 °C have been studied and reported in this paper. Ti/Ni multilayer samples having constant layer thicknesses of 50 Å each are deposited on float glass and Si(1 1 1) substrates using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions at room temperatures. The micro-structural parameters and their evolution with temperature for as-deposited as well as annealed multilayer samples up to 600 °C in a step of 100 °C for 1 h are determined by using X-ray diffraction (XRD) and grazing incidence X-ray reflectivity techniques. The X-ray diffraction pattern recorded at 300 °C annealed multilayer sample shows interesting structural transformation (from crystalline to amorphous) because of the solid-state reaction (SSR) and subsequent re-crystallization at higher temperatures of annealing, particularly at ≥400 °C due to the formation of TiNi3 and Ti2Ni alloy phases. Sample quality and surface morphology are examined by using atomic force microscopy (AFM) technique for both as-deposited as well as annealed multilayer samples. In addition to this, a temperature dependent dc resistivity measurement is also used to study the structural transformation and subsequent alloy phase formation due to annealing treatment. The corresponding magnetization behavior of multilayer samples after each stage of annealing has been investigated by using Magneto-Optical Kerr Effect (MOKE) technique and results are interpreted in terms of observed micro-structural changes. 相似文献
12.
Jinglei Zhu Haitao Wang Shouquan Zhang Hua Zhang Xingke Zhao 《Applied Surface Science》2008,254(20):6687-6692
This study is aimed to introduce an innovative precursor pyrolysis process to prepare Ti-Fe-Ni-C compound powder and to discuss and evaluate the relationship between microstructure and properties of TiC-Fe36Ni cermet coatings in-situ synthesized by reactive plasma spraying (RPS) of these compound powders. The main characteristic of the pyrolysis process is that sucrose (C12H22O11) is used as a source of carbon as well as a binder to bind reactive constituent particles. The compound powder with high bonding strength can avoid the problem that reactive constituent particles are separated during spraying. The TiC-Fe36Ni cermet coatings present typical splat-like morphology of thermally sprayed coatings and consist of two different areas: one is a composite reinforcement area where spherical fine TiC particles (100-500 nm) homogeneously distribute within the Fe36Ni matrix; the other is an area of TiC accumulation. The surface hardness of the coatings reaches about 90 ± 2 (HR15N). The maximum and average microhardness values of the coatings are 1930 HV0.2 (Vicker Hardness) and 1640 HV0.2, respectively. The average bonding strength of the coatings is about 62.3 MPa. The wear resistance property of the coatings is much more than that of Ni60 alloys coatings. 相似文献
13.
In order to prepare lead-free BaTiO3-based PTC (positive temperature coefficient) with low room temperature resistivity, metal Ni is added to BaTiO3-based PTC samples that contain 5, 8, 10, 12, 15, 20 wt% of Ni. The sintering temperature is from 1240 °C to 1260 °C. The sintering atmosphere of Ni/PTC composites ceramics was studied. Two sintering atmospheres were adopted in this experiment; full reducing sintering atmosphere and part reducing sintering atmosphere. Controlling the dose of graphite powder can make these two reducing atmospheres. The experiment data show that the optimal sintering atmosphere is a part-reducing atmosphere. Under on the conditions mentioned above, the room temperature resistivity of the samples can drop to under 10 Ω cm and the PTC jump can reach 103, which represents a good PTC characteristic. 相似文献
14.
Qing Xu Xiao-Fei Zhang Wen Chen Min Chen 《Journal of Physics and Chemistry of Solids》2010,71(11):1550-1556
Ba0.6Sr0.4TiO3 ceramics were prepared by a citrate precursor method. The structure and nonlinear dielectric properties of the resulting ceramics were investigated within the sintering temperature range 1200-1300 °C. Adopting fine Ba0.6Sr0.4TiO3 powder derived from the citrate method was confirmed to be effective in reducing the sintering temperatures required for densification. The ceramic specimens sintered at 1230-1280 °C presented relative densities of around 95%. A significant influence of sintering temperature on the microstructure and nonlinear dielectric properties was detected. The discrepancy in nonlinear dielectric behavior among the specimens sintered at different temperatures was qualitatively interpreted in terms of the dielectric response of polar micro-regions under bias electric field. The specimens sintered at 1230 and 1250 °C attained superior nonlinear dielectric properties, showing relatively low dielectric losses (tan δ) of 0.24% and 0.22% at 10 kHz together with comparatively large figure of merits (FOM) of 121 and 142 at 10 kHz and 20 kV/cm, respectively. 相似文献
15.
K. E. Avjyan V. V. Buniatyan H. R. Dashtoyan 《Journal of Contemporary Physics (Armenian Academy of Sciences)》2013,48(3):134-137
Nanoscale (30–100 nm) films of BiFeO3/BaTiO3/Ni0.5Zn0.5Fe2O4 complex composition have been obtained by the pulsed-laser deposition method. Optical properties of the films were studied in the wavelength range of 250–1000 nm. It is shown that the optical properties of amorphous films deposited at room temperature are explained by the Tauc model for amorphous semiconductors. An increase in the optical gap from 1.7 to 1.95 eV was observed with decreasing film thickness. Allowed direct-band transitions (E g = 3.1 eV) were observed after annealing of films independent of their thickness. 相似文献
16.
Jun Hyung Lim Jong Hyun Shim Jun Hyuk Choi Jin Hyun Park Won Kim Jinho Joo Chan-Joong Kim 《Physica C: Superconductivity and its Applications》2009,469(15-20):1182-1185
We fabricated nano-carbon (NC) doped MgB2 bulks using an in situ process in order to improve the critical current density (Jc) under a high magnetic field and evaluated the correlated effects of the doped carbon content and sintering temperature on the phase formation, microstructure and critical properties. MgB2−xCx bulks with x = 0 and 0.05 were fabricated by pressing the powder into pellets and sintering at 800 °C, 900 °C, or 1000 °C for 30 min.We observed that NC was an effective dopant for MgB2 and that part of it was incorporated into the MgB2 while the other part remained (undoped), which reduced the grain size. The actual C content was estimated to be 68–90% of the nominal content. The NC doped samples exhibited lower Tc values and better Jc(B) behavior than the undoped samples. The doped sample sintered at 900 °C showed the highest Jc value due to its high doping level, small amount of second phase, and fine grains. On the other hand, the Jc was decreased at a sintering temperature of 1000 °C as a result of the formation of MgB4 phase. 相似文献
17.
Composite materials containing metallic nickel and yttria stabilised zirconia (YSZ) have been prepared by a sol gel method.
Microstructural investigations show that metal particles with a diameter of less than 300 nm still remain present after sintering.
In the present work, the conductivity behaviour of such composites was investigated. Furthermore, ageing phenomena, in particular
the influence of the nickel content, were studied. A possible application of such materials as anodes in solid oxide fuel
cells will be discussed.
Paper presented at the 1st Euroconference on Solid State Ionics, Zakynthos, Greece, 11 – 18 Sept. 1994 相似文献
18.
V. Kisand U. Joost V. Reedo T. Tätte A. Saar A. Kikas 《Applied Surface Science》2010,256(14):4538-556
Formation and properties of nickel doped TiO2 films prepared by sol-gel method were studied using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, and energy dispersive X-ray analysis. The results demonstrate that sizes of TiO2 crystallites increase with increasing heating temperature. Also, at temperatures above 800 ° C diffusion of nickel onto the surfaces results in increased concentrations of nickel compounds on the surfaces. Similar to pure TiO2 films the light-induced modification of hydrophilicity is observed also in the case of nickel doped TiO2 films. 相似文献
19.
Hua Su Huaiwu ZhangXiaoli Tang Yulan JingYingli Liu 《Journal of magnetism and magnetic materials》2007
Effects of composition and sintering temperature on grain size, porosity and magnetic properties of the NiZn and NiCuZn ferrites were investigated. It was found that the lowest power loss could be obtained with the equimolar composition for both NiZn and NiCuZn ferrites, which could be attributed to the lowest porosity. A slight deficiency or excess of Fe2O3 content had no pronounced influence on saturation magnetic flux density (Bs) in our testing range. However, a slight excess of Fe2O3 was effective to improve the initial permeability, which could be attributed to decrease of the magnetocrystalline anisotropy. With the increase of sintering temperature, the initial permeability and power loss of the NiZn and NiCuZn ferrites had different development trend, which could be explained by the different variation trend of the grain size and porosity. Power losses of the NiCuZn ferrite samples were lower than that of the NiZn ferrite samples at any sintering temperature. Synthetically, the NiCuZn ferrites had a better performance than the NiZn ferrites in power field use. 相似文献
20.
The 50 vol% SrTiO3/yttria-stabilized zirconia (YSZ) composite ceramic was prepared through powder sintering route in 1400~1500 °C. Only the cubic YSZ and SrTiO3 phases are detected in all the sintered ceramics, and the typical XRD peak positions of both phases have varied dramatically. The grain sizes and relative densities of all specimens increase evidently with the sintering temperature. The width of the SrTiO3/YSZ interfacial region increases from 100.4 to 468.8 nm as the sintering temperature rises from 1400 to 1500 °C. The total electrical conductivities of the sample sintered at 1500 °C are remarkably higher than those at 1400 and 1450 °C, while the ion transference numbers drop from 0.837 to 0.731 with sintering temperature from 1400 to 1500 °C. The variations in the electrical properties above can be interpreted based on the effects of sintering temperature on the elemental diffusions during the sintering process. 相似文献