首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excited states of [Ru(bpy)2(deeb)](PF6)2, where bpy is 2,2-bipyridine and deeb is 4,4'-(CO2CH2CH3)2-2,2'-bipyridine, were found to be efficiently quenched by triiodide (I3-) in acetonitrile and dichloromethane. In dichloromethane, I3- was found to quench the excited states by static and dynamic mechanisms; Stern-Volmer analysis of the time-resolved and steady-state photoluminescence data produced self-consistent estimates for the I3- + Ru(bpy)2(deeb)2+ <==> [Ru(II)(bpy)2(deeb)2+,(I3-)]+ equilibrium, K = 51,000 M(-1), and the bimolecular quenching rate constant, kq = 4.0 x 10(10) M(-1) s(-1). In acetonitrile, there was no evidence for ion pairing and a dynamic quenching rate constant of k(q) = 4.7 x 10(10) M(-1) s(-1) was calculated. Comparative studies with Ru(bpy)2(deeb)2+ anchored to mesoporous nanocrystalline TiO2 thin films also showed efficient excited-state dynamic quenching by I3- in both acetonitrile and dichloromethane, kq = 1.8 x 10(9) and 3.6 x 10(10) M(-1) s(-1), respectively. No reaction products for the excited-state quenching processes were observed by nanosecond transient absorption measurements from 350 to 800 nm under any experimental conditions. X-ray crystallographic, IR, and Raman data gave evidence for interactions between I3- and the bpy and deeb ligands in the solid state.  相似文献   

2.
We present a carbon paste electrode (CPE) modified using the electron mediator bis(1,10‐phenanthroline‐5,6‐dione)(2,2′‐bipyridine)ruthenium(II) ([Ru(phend)2bpy]2+) exchanged into the inorganic layered material zirconium phosphate (ZrP). X‐Ray powder diffraction showed that the interlayer distance of ZrP increases upon [Ru(phend)2bpy]2+ intercalation from 10.3 Å to 14.2 Å. The UV‐vis and IR spectroscopies results showed the characteristic peaks expected for [Ru(phend)2bpy]2+. The UV‐vis spectrophotometric results indicate that the [Ru(phend)2bpy]2+ concentration inside the ZrP layers increased as a function of the loading level. The exchanged [Ru(phend)2bpy]2+ exhibited luminescence even at low concentration. Modified CPEs were constructed and analyzed using cyclic voltammetry. The intercalated mediator remained electroactive within the layers (E°′=–38.5 mV vs. Ag/AgCl, 3.5 M NaCl) and electrocatalysis of NADH oxidation was observed. The kinetics of the modified CPE shows a Michaelis–Menten behavior. This CPE was used for the oxidation of NADH in the presence of Bakers' yeast alcohol dehydrogenase. A calibration plot for ethanol is presented.  相似文献   

3.
The direct intercalation reaction of [Co(tpy)(2)](2+) with the highly hydrated θ phase of layered zirconium phosphate (θ-ZrP) resulted in the formation of the oxidized [Co(tpy)(2)](3+) ion within the ZrP material. The X-ray powder diffraction patterns showed that the interlayer distance increases from 10.3 ? in θ-ZrP to 14.9 ? in the dry [Co(tpy)(2)](3+)-intercalated ZrP {[Co(tpy)(2)](3+):ZrP} phase. The complex remains electroactive within the layers of ZrP. The formal potential of a carbon paste electrode (CPE) modified with [Co(tpy)(2)](3+):ZrP (E°' = 40.8 mV versus Ag/AgCl, 3.5 M NaCl) is non-pH-dependent. However, the sensitivity of the [Co(tpy)(2)](3+):ZrP-modified CPE for the detection of reduced nicotinamide adenine dinucleotide (NADH) electrooxidation was lower than that of a previously reported CPE modified with [Ru(phend)(2)bpy](2+)-intercalated ZrP. (1) To improve the characteristics of NADH electrooxidation of the [Co(tpy)(2)](3+):ZrP-modified CPE, we included the enzyme diaphorase in solution, which increased the electrocatalytic current for NADH oxidation. A bienzymatic lactate biosensor was constructed and used for lactate sensing.  相似文献   

4.
The kinetics of electron transfer for the reactions cis-[Ru(IV)(bpy)2(py)(O)]2+ + H+ + [Os(II)(bpy)3]2+ <==> cis-[Ru(III)(bpy)2(py)(OH)]2+ + [Os(III)(bpy)3]3+ and cis-[Ru(III)(bpy)2(py)(OH)]2+ + H+ + [Os(II)(bpy)3]2+ <==> cis-[Ru(II)(bpy)2(py)(H2O)]2+ + [Os(III)(bpy)3]3+ have been studied in both directions by varying the pH from 1 to 8. The kinetics are complex but can be fit to a double "square scheme" involving stepwise electron and proton transfer by including the disproportionation equilibrium, 2cis-[Ru(III)(bpy)2(py)(OH)]2+ <==> (3 x 10(3) M(-1) x s(-1) forward, 2.1 x 10(5) M(-1) x s(-1) reverse) cis-[Ru(IV)(bpy)2(py)(O)]2+ + cis-[Ru(II)(bpy)2(py)(H2O)]2+. Electron transfer is outer-sphere and uncoupled from proton transfer. The kinetic study has revealed (1) pH-dependent reactions where the pH dependence arises from the distribution between acid and base forms and not from variations in the driving force; (2) competing pathways involving initial electron transfer or initial proton transfer whose relative importance depends on pH; (3) a significant inhibition to outer-sphere electron transfer for the Ru(IV)=O2+/Ru(III)-OH2+ couple because of the large difference in pK(a) values between Ru(IV)=OH3+ (pK(a) < 0) and Ru(III)-OH2+ (pK(a) > 14); and (4) regions where proton loss from cis-[Ru(II)(bpy)2(py)(H2O)]2+ or cis-[Ru(III)(bpy)2(py)(OH)]2+ is rate limiting. The difference in pK(a) values favors more complex pathways such as proton-coupled electron transfer.  相似文献   

5.
合成了含二氮芴和联吡啶等配体的一系列新型钌铁双核配合物:[(C~1~0H~6N~2)C=N-N=CR-Fc)Ru(bpy)~2]·(PF~6)~2,[(C~1~0H~6N~2)C=N--C~6H~4-N=CR-Fc)Ru(bpy)~2]·(PF~6)~2,[(C~1~0H~6N~2)C=N-C~6H~4-C~6H~4-N=CR-Fc)Ru(bpy)~2]·(PF~6)~2,并对其进行了光谱表征,通过对该类配合物的循环伏安和发光光谱研究,讨论其激发态的氧化还原性和对[Ru(bpy)~3]^2^+发光过程的猝灭作用.研究表明猝灭过程为扩散控制的双分子交换能量传递  相似文献   

6.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

7.
Efficient and stable quenching of electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(II) by oxidizing ferrocene methanol (FcMeOH) at the electrode is reported. Bimolecular energy or electron transfer between Ru(bpy)(3)(2+*) and ferrocenium (Fc(+)), the oxidized species of Fc, along with suppression of radical reactions is suggested as the mechanism for quenching ECL. Fc shows more efficient quenching of ECL compared with the known quenchers phenol and 1,1-dimethyl-4,4'-bipyridine dication (MV(2+)). The ECL quenching rate constant was 5.6 x 10(10) M(-)(1) s(-)(1). Using Fc as a quencher label on a complementary DNA sequence, an intramolecular ECL quenching in hybridized oligonucleotide strands has been realized. With essentially complete quenching efficiency, this system has the potential for application to sequence-specific DNA detection.  相似文献   

8.
The electrochemiluminescence (ECL) of magnetic microbeads modified with tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) was studied in the presence of tri-n-propylamine (TPA) to develop highly sensitive ECL detection system, where the employed microbead has a diameter of 4.5 microm. The ECL signal of the [Ru(bpy)3]2+ derivative-modified magnetic microbeads was found to be affected by the geometrical distribution of the magnetic microbeads on the electrode surface. The ECL peak intensity increased with increasing the number of the beads on the electrode surfaces up to 1.6 x 10(6) beads cm(-2), although above 1.6 x 10(6) beads cm(-2), it decreased. The ECL decrease arises from the physical prevention of the ECL from reaching the photomultiplier tube by the excessive beads. The observed peak ECL signal of the [Ru(bpy)3]2+ derivative-modified magnetic microbeads in the presence of NaN3, which serves as a preservative substance, mainly appeared at a potential of +0.90 V vs Ag/AgCl where [Ru(bpy)3]2+ is hardly oxidized, whereas the ECL signal in the absence of NaN3 appeared at a potential of +1.15 V. The presence of NaN3 on the electrode surface retards formation of an oxide layer on the electrode surfaces and promotes TPA oxidation. The ECL response at +0.90 V was mainly attributed to ECL reaction of excited-state [Ru(bpy)3]2+* formed by oxidation of [Ru(bpy)3]+ with TPA radical cation, where the [Ru(bpy)3]+ was generated by reduction of [Ru(bpy)3]2+ with TPA radical.  相似文献   

9.
Rüba E  Hart JR  Barton JK 《Inorganic chemistry》2004,43(15):4570-4578
Here we report the synthesis of luminescent ruthenium complexes that bind DNA base pair mismatches. [Ru(bpy)2(tpqp)]Cl2 (tpqp = 7,8,13,14-tetrahydro-6-phenylquino[8,7-k][1,8]phenanthroline), [Ru(bpy)2(pqp)]Cl2 (pqp = 6-phenylquino[8,7-k][1,8]phenanthroline), and [Ru(bpy)2(tactp)]Cl2 [tactp = 4,5,9,18-tetraazachryseno[9,10-b]triphenylene] have been synthesized, and their spectroscopic properties in the absence and presence of DNA have been examined. While [Ru(bpy)2(pqp)]2+ shows no detectable luminescence, [Ru(bpy)2(tpqp)]2+ is luminescent in the absence and presence of DNA with an excited-state lifetime of 10 ns and a quantum yield of 0.002. Although no increase in emission intensity is associated with binding to mismatch-containing DNA, luminescence quenching experiments and measurements of steady-state fluorescence polarization provide evidence for preferential binding to oligonucleotides containing a CC mismatch. Furthermore, by marking the site of binding through singlet oxygen sensitized damage, the complex has been shown to target a CC mismatch site directly with a specific binding affinity, Kb = 4 x 10(6) M(-1). [Ru(bpy)2(tactp)]2+, an analogue of [Ru(bpy)2(dppz)]2+ containing a bulky intercalating ligand, is luminescent in aqueous solution at micromolar concentrations and exhibits a 12-fold enhancement in luminescence in the presence of DNA. The complex, however, tends to aggregate in aqueous solution; we find a dimerization constant of 9.8 x 10(5) M(-1). Again, by singlet oxygen sensitization it is apparent that [Ru(bpy)2(tactp)]2+ binds preferentially to a CC mismatch; using a DNase I footprinting assay, a binding constant to a CC mismatch of 8 x 10(5) M(-1) is found. Hence results with these novel luminescent complexes support the concept of using a structurally demanding ligand to obtain selectivity in targeting single base mismatches in DNA. The challenge is coupling the differential binding we can obtain to differential luminescence.  相似文献   

10.
The mechanistic pathways of formation of the NADH-like [Ru(bpy) 2(pbnHH)] (2+) species from [Ru(bpy)2(pbn)](2+) were studied in an aqueous medium. Formation of the one-electron-reduced species as a result of reduction by a solvated electron (k=3.0 x 10(10) M(-1) s(-1)) or CO2(*-) (k=4.6 x 10(9) M(-1) s(-1)) or reductive quenching of an MLCT excited state by 1,4-diazabicyclo[2.2.2]octane (k=1.1 x 10(9) M(-1) s(-1)) is followed by protonation of the reduced species (p K a = 11). Dimerization (k7a=2.2 x 10(8) M(-1) s(-1)) of the singly reduced protonated species, [Ru(bpy) 2(pbnH(*))](2+), followed by disproportionation of the dimer as well as the cross reaction between the singly reduced protonated and nonprotonated species (k8= 1.2 x 10(8) M(-1) s(-1)) results in the formation of the final [Ru(bpy)2(pbnHH)](2+) product together with an equal amount of the starting complex, [Ru(bpy)2(pbn)](2+). At 0.2 degrees C, a dimeric intermediate, most likely a pi-stacking dimer, was observed that decomposes thermally to form an equimolar mixture of [Ru(bpy)2(pbnHH)](2+) and [Ru(bpy)2(pbn)](2+) (pH<9). The absence of a significant kinetic isotope effect in the disproportionation reaction of [Ru(bpy)2(pbnH(*))](2+) and its conjugate base (pH>9) indicates that disproportionation occurs by a stepwise pathway of electron transfer followed by proton transfer.  相似文献   

11.
A series of Ru(II)-peptide nucleic acid (PNA)-like monomers, [Ru(bpy)(2)(dpq-L-PNA-OH)](2+) (M1), [Ru(phen)(2)(dpq-L-PNA-OH)](2+) (M2), [Ru(bpy)(2)(dppz-L-PNA-OH)](2+) (M3), and [Ru(phen)(2)(dppz-L-PNA-OH)](2+) (M4) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dpq-L-PNA-OH = 2-(N-(2-(((9H-fluoren-9-yl)methoxy)carbonylamino)ethyl)-6-(dipyrido[3,2-a:2',3'-c]phenazine-11-carboxamido)hexanamido)acetic acid, dppz-L-PNA-OH = 2-(N-(2-(((9H-fluoren-9-yl) methoxy)carbonylamino)ethyl)-6-(dipyrido[3,2-f:2',3'-h]quinoxaline-2-carboxamido)acetic acid) have been synthesized and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, and elemental analysis. As is typical for Ru(II)-tris(diimine) complexes, acetonitrile solutions of these complexes (M1-M4) show MLCT transitions in the 443-455 nm region and emission maxima at 618, 613, 658, and 660 nm, respectively, upon photoexcitation at 450 nm. Changes in the ligand environment around the Ru(II) center are reflected in the luminescence and electrochemical response obtained from these monomers. The emission intensity and quantum yield for M1 and M2 were found to be higher than for M3 and M4. Electrochemical studies in acetonitrile show the Ru(II)-PNA monomers to undergo a one-electron redox process associated with Ru(II) to Ru(III) oxidation. A positive shift was observed in the reversible redox potentials for M1-M4 (962, 951, 936, and 938 mV, respectively, vs Fc(0/+) (Fc = ferrocene)) in comparison with [Ru(bpy)(3)](2+) (888 mV vs Fc(0/+)). The ability of the Ru(II)-PNA monomers to generate electrochemiluminescence (ECL) was assessed in acetonitrile solutions containing tripropylamine (TPA) as a coreactant. Intense ECL signals were observed with emission maxima for M1-M4 at 622, 616, 673, and 675 nm, respectively. At an applied potential sufficiently positive to oxidize the ruthenium center, the integrated intensity for ECL from the PNA monomers was found to vary in the order M1 (62%) > M3 (60%) > M4 (46%) > M2 (44%) with respect to [Ru(bpy)(3)](2+) (100%). These findings indicate that such Ru(II)-PNA bioconjugates could be investigated as multimodal labels for biosensing applications.  相似文献   

12.
The interactions between luminophore [Ru(bpy)3]2+, and the lacunary Dawson heteropolyanions, [P2W17O61(FeOH2)]7-, [P2W17O61(FeBr)]6- and [P2W17O61]10- were investigated using a combination of photophysics, optical and Raman spectroscopy. Extensive quenching of the excited state of [Ru(bpy)3]2+ was observed in each case. Quenching is attributed to the formation of association complexes between [Ru(bpy)(3)]2+ and the heteropolyanions in which the charge on the heteropolyanions is fully compensated for by the ruthenium polypyridyl species. The interaction appears to be principally electrostatic in nature producing [Ru(bpy)3]3.5[P2W17O61(FeOH2)], [Ru(bpy)3]3[P2W17O61(FeBr)] and [Ru(bpy)3]5[P2W17O61]10-. The association constants for formation of the clusters were obtained from photophysical studies and surprisingly, despite the electrostatic nature of the interaction, there was no correlation between the charge on the polyoxometallate and the association constant. In particular, the unsubstituted lacunary, [P2W17O61]10-, showed considerably weaker association compared to the transition metal substituted lacunaries, in spite of its 10- charge. Difference absorption spectroscopy revealed a new transition at ca. 480 nm for each of the cluster complexes. From resonance Raman spectroscopy the origin of this transition was found to involve the polyoxometallate. Unlike previously reported adducts, the cluster complexes formed were not luminescent. In all cases the cluster complexes exhibit remarkable photostability, with no photodecomposition or photo-induced ligand exchange reactions evident in acetonitrile, under conditions where [Ru(bpy)3]2+ alone exhibits considerable photolability.  相似文献   

13.
Studies are reported on the reactions of aqueous chlorine with a series of substitution-inert, one-electron metal-complex reductants, which includes [Ru(bpy)3]2+, [Ru(4,4'-Me2bpy)3]2+, [Ru(4,7-Me2phen)3]2+, [Ru(terpy)2]2+, and [Fe(3,4,7,8-Me4phen)3]2+. The reactions were studied by spectrophotometry at 25 degrees C in acidic chloride media at mu = 0.3 M. In general the reactions have the stoichiometry 2[ML3]2+ + Cl2-->2[ML3]3+ + 2Cl-. In the case of [Ru(bpy)3]2+, the reaction is quite photosensitive; the thermal reaction is so slow as to be practically immeasurable. The reactions of [Ru(4,4'-Me2bpy)3]2+ and [Ru(4,7-Me2phen)3]2+ are also highly photosensitive, giving pseudo-first-order rate constants that depend on the monochromator slit width in a stopped-flow instrument; however, the thermal rates are fast enough that they can be obtained by extrapolation of kobs to zero slit width. The reactions of [Ru(terpy)2]2+ and [Fe(3,4,7,8-Me4phen)3]2+ show no appreciable photosensitivity, allowing direct determination of their thermal rate laws. From the kinetic effects of pH, [Cl2]tot, and [Cl-] it is evident that all of the thermal rate laws have a first-order dependence on [ML3]2+ and on [Cl2]. The second-order rate constants decrease as Eo for the complex increases, consistent with the predictions of Marcus theory for an outer-sphere electron-transfer mechanism. Quantum yields at 460 nm for the reactions of [Ru(4,4'-Me2bpy)3]2+ and [Ru(4,7-Me2phen)3]2+ exceed 0.1 and show a dependence on [Cl2] indicative of competition among spontaneous decay of *Ru, nonreactive quenching by Cl2, and reactive quenching by Cl2.  相似文献   

14.
Four complexes of the ligand 1,12-diazaperylene (DAP) have been prepared, [Ru(bpy)n(DAP)(3-n)]2+ where n = 0-2 and [Ru(DAP)3]2+. The [Ru(DAP)3]2+ complex was characterized by X-ray analysis and was found to exhibit the expected propeller-like structure with significant intermolecular pi-stacking interactions. The three Ru(II) complexes showed self-consistent optoelectronic properties with similar ligand-centered pi-pi* absorptions in the range of 333-468 nm and MLCT bands associated with the DAP which increased in intensity and decreased in energy as the number of DAP ligands varied from 1 to 3. Hypochromicity and viscosity changes were observed that were consistent with DAP intercalation into DNA, and binding constants were measured in the range of 1.4-1.6 x 10(6) M(-1) for the mixed ligand complexes. Furthermore, the complex [Ru(bpy)2(DAP)]2+ was found to photocleave plasmid DNA upon irradiation with visible light.  相似文献   

15.
Dennany L  Keyes TE  Forster RJ 《The Analyst》2008,133(6):753-759
Luminescence quenching of the metallopolymers [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(PVP)(10)Os(bpy)(2)](4+), both in solution and as thin films, is reported, where bpy is 2,2'-bipyridyl and PVP is poly(4-vinylpyridine). When the metallopolymer is dissolved in ethanol, quenching of the ruthenium excited state, Ru(2+*), within [Ru(bpy)(2)(PVP)(10)](2+) by [Os(bpy)(3)](2+) proceeds by a dynamic quenching mechanism and the rate constant is (1.1 +/- 0.1) x 10(11) M(-1) s(-1). This quenching rate is nearly two orders of magnitude larger than that found for quenching of monomeric [Ru(bpy)(3)](2+) under the same conditions. This observation is interpreted in terms of an energy transfer quenching mechanism in which the high local concentration of ruthenium luminophores leads to a single [Os(bpy)(3)](2+) centre quenching the emission of several ruthenium luminophores. Amplifications of this kind will lead to the development of more sensitive sensors based on emission quenching. Quenching by both [Os(bpy)(3)](2+) and molecular oxygen is significantly reduced within a thin film of the metallopolymer. Significantly, in both optically driven emission and electrogenerated chemiluminescence, emission is observed from both ruthenium and osmium centres within [Ru(bpy)(2)(PVP)(10)Os(bpy)(2)](4+) films, i.e. the ruthenium emission is not quenched by the coordinated [Os(bpy)(2)](2+) units. This observation opens up new possibilities in multi-analyte sensing since each luminophore can be used to detect separate analytes, e.g. guanine and oxoguanine.  相似文献   

16.
The spectroscopic and photophysical properties of zeolite-Y-entrapped [Ru(bpy)3]2+ co-doped with either [Fe(bpy)3]2+ or [Fe(tpy)2]2+ over a range of iron complex loadings are presented. In solution, [Ru(bpy)3]2+ undergoes efficient bimolecular energy transfer to [Fe(bpy)3]2+, whereas only radiative or trivial energy transfer occurs between [Ru(bpy)3]2+ and [Fe(tpy)2]2+. In sharp contrast, within zeolite Y, both [Fe(bpy)3]2+ and [Fe(tpy)2]2+ were found to effectively quench the donor emission. Fitting the Perrin model to the photophysical data yields an effective quenching radius of 32 and 27 A, respectively, for [Fe(bpy)3]2+ and [Fe(tpy)2]2+. The long-range nature of the quenching suggests F?rster energy transfer. Detailed spectroscopic investigations indicate that [Fe(tpy)2]2+ bound within zeolite Y undergoes significant distortion from octahedral geometry. This distortion results in increased oscillator strength and enhanced spectral overlap, between the [Ru(bpy)3]2+ (3)d pi-pi* donor emission and the co-incident acceptor (1)T2-(1)A1 ligand field absorption compared with solution. This turns on an efficient energy transfer to [Fe(tpy)2]2+ within the confinement of the zeolite Y supercage. Overall, this is an interesting example of the ability of the zeolite environment to provoke new photophysical processes not possible in solution.  相似文献   

17.
A series of pyridine- and phenol-based ruthenium(II)-containing amphiphiles with bidentate ligands of the following types are reported: [(L(PyI))Ru(II)(bpy)(2)](PF(6))(2) (1), [(L(PyA))Ru(II)(bpy)(2)](PF(6))(2) (2), [(L(PhBuI))Ru(II)(bpy)(2)](PF(6)) (3), and [(L(PhClI))Ru(II)(bpy)(2)](PF(6)) (4). Species 1 and 2 are obtained by treatment of [Ru(bpy)(2)Cl(2)] with the ligands L(PyI) (N-(pyridine-2-ylmethylene)octadecan-1-amine) and L(PyA) (N-(pyridine-2-ylmethyl)octadecan-1-amine). The imine species 3 and 4 are synthesized by reaction of [Ru(bpy)(2)(CF(3)SO(3))(2)] with the amine ligands HL(PhBuA) (2,4-di-tert-butyl-6-((octadecylamino)methyl)phenol), and HL(PhClA) (2,4-dichloro-6-((octadecylamino)methyl)phenol). Compounds 1-4 are characterized by means of electrospray ionization (ESI(+)) mass spectrometry, elemental analyses, as well as electrochemical methods, infrared and UV-visible absorption and emission spectroscopies. The cyclic voltammograms (CVs) of 1-2 are marked by two successive processes around -1.78 and -2.27 V versus Fc(+)/Fc attributed to bipyridine reduction. A further ligand-centered reductive process is seen for 1. The Ru(II)/Ru(III) couple appears at 0.93 V versus Fc(+)/Fc. The phenolato-containing 3 and 4 species present relatively lower reduction potentials and more reversible redox behavior, along with Ru(II/III) and phenolate/phenoxyl oxidations. The interpretation of observed redox behavior is supported by density functional theory (DFT) calculations. Complexes 1-4 are surface-active as characterized by compression isotherms and Brewster angle microscopy. Species 1 and 2 show collapse pressures of about 29-32 mN·m(-1), and are strong candidates for the formation of redox-responsive monolayer films.  相似文献   

18.
A new Ru(II) complex of [Ru(bpy)2(Hmspip)]Cl2 {in which bpy=2,2'-bipyridine, Hmspip=2-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} have been synthesized and characterized. The ground- and excited-state acid-base properties of [Ru(bpy)2(Hmspip)]Cl2 and its parent complex of [Ru(bpy)2(Hpip)]Cl2 {Hpip=2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline} have been studied by UV-visible (UV-vis) and emission spectrophotometric pH titrations. [Ru(bpy)2(Hmspip)]Cl2 acts as a calf thymus DNA intercalators with a binding constant of 4.0×10(5) M(-1) in buffered 50 mM NaCl, as evidenced by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4-, DNA competitive binding with ethidium bromide, reverse salt titrations and viscosity measurements.  相似文献   

19.
1H NMR spectroscopy and molecular modelling have been used to investigate the binding of the DeltaDelta-and LambdaLambda-enantiomers of the dinuclear ruthenium(II) complex [[Ru(Me2bpy)2]2(mu-bpm)]4+ [Me2bpy = 4,4'-dimethyl-2,2'-bipyridine; bpm = 2,2'-bipyrimidine] to an RNA tridecanucleotide duplex containing a single-base bulge [r(CCGAGAAUUCCGG)2]], and the corresponding control dodecanucleotide [r(CCGGAAUUCCGG)2]. Both enantiomers bound the control RNA sequence weakly. From upfield shifts of the metal complex H3 and H3' protons throughout the titration of the control dodecanucleotide with DeltaDelta-[[Ru(Me2bpy)2]2(mu-bpm)]4+, a binding constant of 1 x 10(3) M(-1) was determined. In NOESY spectra of the control sequence with added DeltaDelta-[[Ru(Me2bpy)2]2(mu-bpm)]4+, NOEs were only observed to protons from the terminal base-pair residues. No significant changes in chemical shift were observed for either the metal complex or RNA protons upon addition of the LambdaLambda-enantiomer to the control dodecanucleotide. The DeltaDelta-[[Ru(Me2bpy)2]2(mu-bpm)]4+ complex bound the bulge-containing RNA with a significantly greater affinity (6 x 10(4) M(-1)) than the non-bulge control RNA duplex. Competition binding experiments indicated that the LambdaLambda-isomer bound the tridecanucleotide with similar affinity to the DeltaDelta-enantiomer. Addition of DeltaDelta-[[Ru(Me2bpy)2]2(mu-bpm)]4+ to the bulge-containing tridecanucleotide induced selective changes in chemical shift for the base H8 and sugar H1' resonances from the adenine bulge residue, and resonances from nucleotide residues adjacent to the bulge site. Intermolecular NOEs observed in NOESY spectra of the tridecanucleotide with added DeltaDelta-[[Ru(Me2bpy)2]2(mu-bpm)]4+ confirmed the selective binding of the ruthenium complex at the bulge site. Preliminary binding models, consistent with the NMR data, showed that the ruthenium complex could effectively associate in the RNA minor groove at the bulge site.  相似文献   

20.
Liu F  Wang K  Bai G  Zhang Y  Gao L 《Inorganic chemistry》2004,43(5):1799-1806
A novel dinuclear Ru(II) complex, [(bpy)(2)Ru(ebipcH(2))Ru(bpy)(2)](ClO(4))(4), where bpy = 2,2'-bipyridine and ebipcH(2) = N-ethyl-4,7-bis([1,10]-phenanthroline[5,6-f]imidazol-2-yl)carbazole, has been newly synthesized. The pH effects on UV-vis absorption and emission spectra of the complex are studied, and ground- and excited-state ionization constants of the complex are derived. The binding of the complex to calf thymus (ct) DNA is investigated with absorption and luminescence titrations, steady-state emission quenching, and viscosity measurements. The complex acts as a pH-induced "on-off" emission switch between pH 8.0 and pH 10.0 with a maximum on-off ratio of approximately 100 which is favorably compared with the other imidazole-containing Ru(II) complex congeners, and a strong ct-DNA intercalator with an intrinsic binding constant of 1.31(+/-0.08) x 10(6) M(-)(1) in buffered 50 mM NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号