首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
参考Miedema半经验理论 ,建立了Ti -Al系机械合金化 (MA)过程的热力学模型 ,计算了合金呈有序金属间化合物、无序固溶体和非晶态的形成自由能。对Ti50 Al50 不同球磨时间MA粉末的X射线衍射 (XRD)结果进行了分析 ,验证了该热力学模型的正确性  相似文献   

2.
将Cu-40%Zn(40%为质量分数)二元系粉末在-30℃和常温下进行高能球磨,并利用X射线衍射仪及扫描电子显微镜对球磨过程中的组织演变过程及微观形貌进行了研究.研究结果表明:Cu-40%Zn二元系粉末的机械合金化过程是一个Cu向Zn中扩散、固溶与反应的过程,最终产物为Cu0.64Zn0.36(α相)与少量的ZnO相;低温球磨合金粉末的晶格畸变量与晶粒尺寸都比常温球磨的大;与常温球磨不同,低温球磨可以抑制冷焊所带来的不良影响,避免添加过程控制剂,而且体系呈现脆性-脆性特征.  相似文献   

3.
用TEM和XRD技术研究了Mo-15.16%Si,Mo-30%Si和Mo-36.3%Si(质量分数)粉机械合金化过程中的相结构变化.在机械合金化(MA)过程的初始阶段,3种混合物的XRD图中Si峰首先消失,经长时间的球磨后,都可以转变为非晶,但不同成分混合粉的中间产物不同.Mo-30%Si和Mo-36.3%Si是通过Mo与Si之间的互扩散反应形成MoSi2和Mo5Si3金属间化合物,Mo-15.16%Si则是形成了过饱和固溶体而没有形成金属间化合物.  相似文献   

4.
Fe—Ni机械合金化过程中的相变   总被引:2,自引:0,他引:2  
利用X射线衍射、磁测量及透射电子显微技术研究了Fe60Ni40混合粉末的机械合金化过程中的相变行为。结果表明:球磨初期Fe和Ni原子分别向对方晶格扩散形成γ和α固溶体。球磨至30h,有部分非晶化发生,延长球磨时间,非晶相重又转变为晶相。对上述相变行为进行了热力学分析。  相似文献   

5.
针对原有Ti3SiC2的制备方法存在烧结温度高、工艺控制困难的问题,以Ti、Si、C三元粉末为原料,分别采用普通混料和机械合金化对原料粉末进行混合,对混合后的粉末进行XRD、TEM和DTA分析,从而确定合成Ti3SiC2的真空热压工艺,并对经热压制备的材料进行组织结构分析。结果表明:机械合金化能降低合成Ti3SiC2的反应温度,使合成Ti3SiC2的过程更加充分,热压后的烧结体组织更加均匀,几乎没有成分偏析。  相似文献   

6.
Al1-xFex混合粉末的机械合金化   总被引:4,自引:1,他引:4  
对Al1-Fe(x-5,50,75at%)混合粉末进行了球磨,用X射线、电镜等分别研究了球磨粉末的结构和形貌.得到了Al95Fe5中AI相的有效晶粒尺寸和Alt-xFex的平均晶粒尺寸随球磨时间的变化,其变化规律是先增大,再减小,最后达到稳定值而不再变化.得到了Al95Fe5中的晶格畸变,也出现交替变化.对于Al1-xFex混合粉末,Al,Fe成分越接近,机械合金化过程中扩散越易于进行.球磨样品晶粒尺寸越小,聚集的趋势越小.固溶体的溶解度与混合粉末的成分有关.  相似文献   

7.
在Cu-W系中,用机械合金化的方法能得到过饱和固溶体,而该系统在液、固相状态下完全不互溶,这说明由于机械球磨引起的粒子细化对扩展固溶起了决定性的作用,用X射线衍射、扫描电镜、透射电镜测试了该固溶体的结构、其稳定性用DTA热分析测定。  相似文献   

8.
机械合金化的研究进展   总被引:5,自引:0,他引:5  
机械合金化(MA),作为制备合金粉末的一种高新技术,使过去用传统熔炼工艺难以实现的某些物质的合金化和远离热力学平衡的准稳态、非平衡态及新物质的合成成为可能.MA技术引起了材料科学界的广泛关注.综述了近年来机械合金化在理论模型和固态反应方面的研究情况,详细介绍了MA技术在制备弥散强化合金、金属间化合物、功能材料和亚稳材料(包括非晶、准晶、过饱和固溶体、纳米晶等)中的应用进展,展望了机械合金化的发展趋势.  相似文献   

9.
采用机械合金化方法制备了Fe i Si,Fe Co Si三元系合金,利用X射线衍射仪研究了合金化过程中的相变行为.结果表明,Fe40Ni40Si20经36h球磨可形成αFe(bcc)和γFe(fcc)两相混合固溶体,继续球磨,过饱和α相逐渐分解并向γ相转化,72h后可得单相γFe过饱和固溶体.Fe40Co40Si20经36h可得αFe过饱和固溶体,继续球磨未发现新相生成.  相似文献   

10.
机械合金化制备Fe-B-Si纳米晶粉末   总被引:3,自引:0,他引:3  
该文采用机械合金化方法制备Fe50B14Si36合金纳米晶材料。球磨过程中对该合金进行取样,通过X射线衍射分析,及晶粒尺寸和点阵常数的计算,发现该合金在球磨300h前晶粒尺寸迅速下降,能够实现纳米化;球磨时间小于300h时材料的矫顽力增加,而当球磨时间超过300h时矫顽力下降,材料的软磁性能增强。  相似文献   

11.
采用ZJM10T型搅拌球磨机和X射线衍射仪(XRD),研究了机械研磨(MG)条件下MoSi2的同素异构转变及其非晶化,并对其转变机理进行了初步分析和讨论.结果表明,当球料比为10∶1,球磨机转速为450 r/min时,MoSi2粉末在机械球磨80 h后,没有H-MoSi2生成;而当球料比为20∶1,转速为600 r/min时,机械球磨60 h,已有少量的H-MoSi2生成,同时随着球磨时间的增加H-MoSi2的量逐渐增加.继续机械研磨,MoSi2合金粉末呈非晶化.试验结果证实相对高的能量有助于MoSi2的固态相变.  相似文献   

12.
Mg-Al二元系的机械合金化研究   总被引:1,自引:0,他引:1  
用X射线衍射和DSC对成分为Mg1-xAlx(x=0.1,0.4,0.6,0.8)的纯元素混合粉末的机械合金化过程进行了研究。结果表明成分为Mgo.9Al0.1和Mg0.6Al0.4的混合粉末经球磨后都有Mg17Al12相生成;而球磨成分为Mg0.4Al0.6的混合粉末,没有得到预想的Mg2Al3相,但经热处理后得到Mg2Al3相;对于成分为Mg0.2Al0.8的混合粉末经球磨后只得到固溶体结构。  相似文献   

13.
采取HF+HNO3+H2O的方案确实能够很好地显示金属间化合物MoSi2的晶界,有利于进一步判定材料晶粒尺寸的大小。在具体操作的过程中,需要注意腐蚀手法,保证腐蚀过程中产生的气体顺畅溢出;严格控制时间;还要注意腐蚀过程中使用的器具对于腐蚀液功效的影响,以及腐蚀液保存的容器的选择。此腐蚀液的再现性非常稳定。以此为例,在金相技术实践教学环节指导同学们掌握有关思路、方法。  相似文献   

14.
利用M-200型磨损试验机考察了MoSi2-淬火45针仪分析讨论其磨损机理.结果表明:润滑油明显改善了MoSi2材料的摩擦学性能;MoSi2与淬火45#钢对摩在120~150 N载荷范围内表现出较好的摩擦磨损综合性能;其磨损机制主要表现为疲劳磨损、磨粒磨损和轻微粘着磨损.图4,参10.  相似文献   

15.
MoSi_2对二硼化钛惰性阴极材料性能的影响   总被引:3,自引:1,他引:2  
用冷压烧结法制造了二硼化钛惰性阴极,研究了MoSi2对二硼化钛惰性阴极烧结性能的影响,得到致密的TiB2基惰性阴极试样·在电解实验后,通过对二硼化钛阴极的表面和剖面的电子显微分析,发现铝液对此种惰性阴极的湿润性好于电解质对惰性阴极的湿润性,避免了电解质与阴极表面的直接接触·发现惰性阴极的腐蚀为电解质对阴极晶界的腐蚀·测得腐蚀速度为2-53mm/a,证明其耐蚀性能良好  相似文献   

16.
引入短程有序-扩展似化学模型来描述EuCl3-CaCl2二元体系液相的Gibbs自由能,根据实验测定的相图和混合焓数据,运用CALPHAD技术对该体系进行了热力学优化和计算,优化计算的结果和实测值符合很好.  相似文献   

17.
建立了亚临界混合工质有机朗肯循环热力学模型,基于沸点差法提出了混合工质筛选方案,以净输出功为目标函数优化了蒸发参数和质量配比,针对不同热源温度筛选出了最佳混合工质;比较分析了最佳混合工质和最佳纯工质的系统性能参数、损分布.结果表明,各热源温度下最佳混合工质的净输出功均超过了同热源温度下的最佳纯工质,增长幅度为0.13%~5.04%.较小的汽化潜热和接近冷却水温升的冷凝温度滑移是混合工质净输出功大于纯工质的主要原因;混合工质的膨胀机进口处压力、温度均低于纯工质,最大降低幅度分别达到了27.08%和9.93%;混合工质的膨胀机损和冷凝器损均小于纯工质,总损也低于纯工质.  相似文献   

18.
出现分层曲线的二元相图,可以按临界点将曲线分为两部分,l_α和l_β;对应分层的两溶液相α,β的热力学性质有4个:II~E(α),S~E(α),II~E(β),S~E(β)。加上相图中两温度—组成曲线l_α和l_β共6个量,经过热力学分析可以给出这6个量间的关系:假设这6个量间的任意4个已知,可以将另外2个量计算出来。因此,在一些条件下,可以给出有价值的结论或公式。  相似文献   

19.
纳米结构合金的机械合金化制备   总被引:7,自引:1,他引:6  
简要回顾了机械合金化(MA)技术发展的概况,简述了MA在合金中引起的结构演变和非平衡相变的基本过程和机制,在此基础上,结合作者近年来的研究工作,介绍了纳米晶过饱和固溶体合金,纳米相复合合金,纳米结构储氢合金等非平衡态材料的MA制备,及其相关的微观结构与性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号