首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weinert CH  Strelow FW 《Talanta》1983,30(10):755-760
Ion-exchange distribution coefficients and elution curves are presented for copper(I), silver, gold(I), palladium, platinum(II), rhodium(III), iridium(III), ruthenium(III), osmium(III), mercury(II), thallium(I), tellurium(II), lead and bismuth in mixtures of thiourea, hydrobromic acid, acetone and water, with the cation-exchange resin AGW50W-X4. The system affords excellent separations of rhodium, mercury, silver (or copper), tellurium, gold, and palladium (or platinum) from each other.  相似文献   

2.
Mojski M 《Talanta》1978,25(3):163-165
The extraction of gold, palladium and platinum from hydrochloric acid, hydrobromic acid and iodide media by solutions of di-n-octyl sulphide in cyclohexane was examined. From distribution data it was concluded that the monosolvates AuX(3).DOS and disolvates PdX(2).2DOS are extracted. Extraction of platinum was efficient only from iodide solutions; a disolvate PtI(4).2DOS was formed. The possibility of separation of gold and palladium from platinum by extraction from bromide or chloride solutions and simultaneous extraction of palladium and platinum from an iodide medium was demonstrated.  相似文献   

3.
Marczenko Z  Kuś S  Mojski M 《Talanta》1984,31(11):959-962
The conditions [acid used, presence of chloride and tin(II)] for the extractive separation and spectrophotometric determination of palladium and platinum as the dithizonates Pd(HDz)(2) and Pt(HDz)(2) have been examined. In the absence of stannous chloride platinum does not undergo extraction. Conditions for the separation and determination of these metals in the presence of mercury, gold and copper, which are also extracted with dithizone into carbon tetrachloride or chloroform under the conditions suitable for palladium (1M sulphuric acid/0.1M hydrochloric acid), have been defined. The mercury and gold dithizonates are formed quickly and can be removed before the palladium and platinum compounds have had time to form. They can be decomposed with iodide. Copper dithizonate is decomposed by reduction with tin(II). The proposed procedure has been applied to the determination of palladium in technical platinum metal.  相似文献   

4.
The extraction of palladium and platinum with trioctylphosphine oxide (TOPO) in cyclohexane, chloroform, methyl isobutyl ketone (MIBK) and 2,2′-dichlorodiethyl ether (DCDE) from hydrochloric and hydrobromic acids in dependence on the concentration of the acids and the extractant has been investigated. The obtained relation have been discussed and the possibilities of the separation of palladium, platinum, gold and their simultaneous extraction have been pointed out.  相似文献   

5.
Selective recovery and concentration of platinum(IV) and palladium(II) from hydrochloric acid solutions of varied composition was studied using commercial reagents propiconazole and penconazole as extractants. The ranges of hydrochloric acid concentrations for effective extraction and highly selective separation of platinum metals from Al(III) and Ni(II) with propiconazole (toluene with 15 vol % n-decanol as deluent) and penconazole (chloroform) were determined. The conditions for 10-fold selective concentration of platinum metals with recovery of more than 99.9% of metal ions into the organic phase were found. The conditions for quantitative (>99%) stripping of platinum(IV) with a hydrochloric acid solution of thiourea and palladium(II) with ammonia solution were determined. The results obtained can be used for optimizing the modes of selective recovery of platinum(IV) and palladium(II) from hydrochloric acid solutions formed in leaching of alumina-supported platinum-rhenium, platinum-nickel, and palladium catalysts.  相似文献   

6.
The extraction of gold(III), palladium(II), and platinum(IV) with 1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole from hydrochloric acid solutions into toluene has been studied. The extraction follows the anion-exchange mechanism. The concentration constants and thermodynamic parameters of the extraction reaction have been calculated. The reagent is proposed for use in the extraction of the sum of precious metals.  相似文献   

7.
Mojski M 《Talanta》1980,27(1):7-10
Extraction of platinum metals with TPP in 1,2-dichloroethane from hydrochloric acid medium has been examined. At hydrochloric acid concentrations higher than 6M, palladium, platinum and osmium are extracted, whereas at low acidity only palladium is quantitatively extracted. Addition of stannous chloride as labilizing agent makes possible a group separation of platinum metals (except osmium). Possible extraction mechanisms are discussed.  相似文献   

8.
M Donaldson E 《Talanta》1988,35(1):47-53
A method for determining approximately 0.2 mug/g or more of arsenic in ores, concentrates and related materials is described. After sample decomposition arsenic(V) is reduced to arsenic(III) with titanium(III) and separated from iron, lead, zinc, copper, uranium, tin, antimony, bismuth and other elements by cyclohexane extraction of its xanthate complex from approximately 8-10M hydrochloric acid. After washing with 10M hydrochloric acid-2% thiourea solution to remove residual iron and co-extracted copper, followed by water to remove chloride, arsenic is stripped from the extract with 16M nitric acid and ultimately determined in a 2% nitric acid medium by graphite-furnace atomic-absorption spectrometry, at 193.7 nm, in the presence of thiourea (which eliminates interference from sulphate) and palladium as matrix modifiers. Small amounts of gold, platinum and palladium, which are partly co-extracted as xanthates under the proposed conditions, do not interfere.  相似文献   

9.
Hapfty J  Riley LB 《Talanta》1968,15(1):111-117
A method is described for the determination of palladium down to 4ppb (parts per billion, 10(9)), platinum down to 10 ppb and rhodium down to 5 ppb in 15 g of sample. Fire-assay techniques are used to preconcentrate the platinum metals into a gold bead, then the bead is dissolved in aqua regia and diluted to volume with 1M hydrochloric acid. The solution is analysed by optical emission spectrography of the residue from 200 mul of it evaporated on a pair of flat-top graphite electrodes. This method requires much less sample handling than most published methods for these elements. Data are presented for G-1, W-1, and six new standard rocks of the U.S. Geological Survey. The values for palladium in W-1 are in reasonable agreement with previously published data.  相似文献   

10.
N-n-octylaniline in xylene is used for the extractive separation of gold(III) from halide media. Gold(III) was extracted quantitatively with 10 ml of 2% reagent in xylene from 0.5-10 M and 0.5-8 M hydrochloric acid and hydrobromic acid, respectively. It was stripped from the organic phase with ammonia buffer solution (pH 10.1) and estimated spectrophotometrically with stannous chloride. The effect of metal ion, acids, reagent concentration and of various foreign ions has been investigated. Method is applicable to the analysis of synthetic mixtures containing platinum metals and alloy samples. The method is fast, accurate and precise.  相似文献   

11.
Tri-n-octylphosphine sulfide (TOPS) has been investigated as the stationary phase in reversed-phase partition paper Chromatographie separations using nitric or hydrochloric acids as the mobile phase. TOPS has also been studied as an extractant for metal ions. Silver, mercury (II), and palladium (II) were found to have RF values of zero when nitric acid was used as the mobile phase. These same ions were also selectively extracted from aqueous nitric acid solutions. Gold(III), mercury(II), palladium (II), and platinum (IV) were found to have RF values of zero when hydrochloric acid was used as the mobile phase. However, only gold(III) and mercury(II) were extracted from aqueous hydrochloric acid solutions in liquid-liquid extraction systems. Several separations were successfully performed from 1 M nitric acid.  相似文献   

12.
Moloughney PE  Faye GH 《Talanta》1976,23(5):377-381
The tin-collection scheme of fire-assaying has been simplified to permit the rapid and accurate determination of platinum, palladium and gold in ores and related materials. The presence of tellurium in the charge ensures that the precious metals remain insoluble during the parting of the tin button with hydrochloric acid. The residue is easily collected and dissolved and the resultant solution analysed for the precious metals by AAS. The accuracy of the method has been established by application to five diverse certified reference materials.  相似文献   

13.
Kundu D  Roy SK 《Talanta》1992,39(4):415-418
A spectrophotometric method has been developed for determination of trace amounts of platinum in glass. The method is based on the extraction of platinum(II) from 1M hydrochloric acid containing 0.2M stannous chloride and 4 x 10(-4)M dithizone onto polyurethane foam, elution with acetone (containing 3% v/v concentrated hydrochloric acid) and measurement of the absorbance of the eluate at 530 nm. Beer's law is obeyed up to 10.0 microg/ml Pt. The minimum platinum level in the eluate that can be determined by this method is 0.1 microg/ml.  相似文献   

14.
Manku GS  Bhat AN  Jain BD 《Talanta》1969,16(10):1421-1429
Oximidobenzotetronic acid is suggested as a reagent for the spectrophotometric determination of osmium(IV), iridium(III), iridium(IV), platinum(IV) and for separation and determination of palladium(II) and ruthenium(III) in the presence of other platinum metals. Iridium(III) and (IV) can be estimated when present together.  相似文献   

15.
The sodium salt of N-(N-bromo-C-tetradecyl betainyl)-C-tetradecyl betaine is presented as a gravimetrie reagent for the determination of gold. Two complexes have been isolated; one, precipitated from hydrochloric acid solution, containing 22.14% gold; the other, from hydrobromic acid solution, containing 18.01% gold. Both complexes may be dried to constant weight at 85° C, thus giving the advantage of a favorable weight factor. Determinations from hydrobromic acid solutions are more rapid and offer several other advantages. Optimum conditions have been established. The number of interfering ions is small and a method for thie separation of gold from these ions was developed. A procedure for the determination of gold in ore concentrates was applied to several samples with satisfactory results.  相似文献   

16.
Donaldson EM 《Talanta》1990,37(10):955-964
A continuous hydride-generation atomic-absorption spectrometric method for determining approximately 0.02 mug/g or more of antimony in ores, concentrates, rocks, soils and sediments is described. The method involves the reduction of antimony(V) to antimony(III) by heating with hypophosphorous acid in a 4.5M hydrochloric acid-tartaric acid medium and its separation by filtration, if necessary, from any elemental arsenic, selenium and tellurium produced during the reduction step. Antimony is subsequently separated from iron, lead, zinc, tin and various other elements by a single cyclohexane extraction of its xanthate complex from approximately 4.5M hydrochloric acid/0.2M sulphuric acid in the presence of ascorbic acid as a reluctant for iron(III). After the extract is washed, if necessary, with 10% hydrochloric acid-2% thiourea solution to remove co-extracted copper, followed by 4.5M hydrochloric acid to remove residual iron and other elements, antimony(III) in the extract is oxidized to antimony(V) with bromine solution in carbon tetrachloride and stripped into dilute sulphuric acid containing tartaric acid. Following the removal of bromine by evaporation of the solution, antimony(V) is reduced to antimony(III) with potassium iodide in approximately 3M hydrochloric acid and finally determined by hydride-generation atomic-absorption spectrometry at 217.8 nm with sodium borohydride as reluctant. Interference from platinum and palladium, which are partly co-extracted as xanthates under the proposed conditions, is eliminated by complexing them with thiosemicarbazide during the iodide reduction step. Interference from gold is avoided by using a 3M hydrochloric acid medium for the hydride-generation step. Under these conditions gold forms a stable iodide complex.  相似文献   

17.
Summary The application of first-derivative spectrometry to the simultaneous determination of palladium(II), platinum(IV) and gold(III) is described. Light absorption of stable chlorocomplexes formed in 1 mol/l hydrochloric acid provides the basis of their determinations. A difference in the derivative amplitudes between two first-derivative zero crossing points of one metal A is read, corrected for the contribution of metal B and used for quantitation of metal C. Palladium (0.48–20 g ml–1), platinum (0.16–24 g ml–1) and gold (0.32–24 g ml–1) have been determined with good precision and accuracy without any separations. Results are also presented for the simultaneous determination of the three precious metals in the presence of several major constituents.  相似文献   

18.
Donaldson EM  Leaver ME 《Talanta》1988,35(4):297-300
A recent graphite-furnace atomic-absorption method for determining approximately 0.2 mug/g or more of arsenic in ores, concentrates, rocks, soils and sediments, after separation from matrix elements by cyclohexane extraction of arsenic(III) xanthate from approximately 8-10M hydrochloric acid, has been modified to include an alternative hydride-generation atomic-absorption finish. After the extract has been washed with 10M hydrochloric acid-2% thiourea solution to remove co-extracted copper and residual iron, arsenic(III) in the extract is oxidized to arsenic(V) with bromine solution in carbon tetrachloride and stripped into water. Following the removal of bromine by evaporation of the solution, arsenic is reduced to arsenic(III) with potassium iodide in approximately 4M hydrochloric acid and ultimately determined to hydride-generation atomic-absorption spectrometry at 193.7 nm, with sodium borohydride as reductant. Interference from gold, platinum and palladium, which are partly co-extracted as xanthates under the proposed conditions, is eliminated by complexing them with thiosemicarbazide before the iodide reduction step. The detection limits for ores and related materials is approximately 0.1 mug of arsenic per g. Results obtained by this method are compared with those obtained previously by the graphite-furnace method.  相似文献   

19.
Moloughney PE 《Talanta》1980,27(4):365-367
A method is presented for the determination of palladium, platinum, gold and silver in ores and concentrates by a fire-assay and wet chemical technique. After parting of the lead assay button with dilute nitric acid, and separation of the solution from the residue, the palladium and platinum in the solution are precipitated by the addition of stannous chloride, with tellurium as collector. The resulting precipitate is combined with the gold residue and dissolved in aqua regia, then the solution is analysed for palladium, platinum and gold by atomic-absorption spectrophotometry (AAS). Silver is determined in the original solution by AAS before the reduction step.  相似文献   

20.
A simple, rapid and sensitive spectrophotometric procedure for the determination of platinum has been elaborated. Pt traces were determined in the form of the PtCl(6)(2-) complex in hydrochloric acid solution whose concentration varies from 0.01 to 2 mol L(-1) by measuring the absorbance at 260 nm. The detection limit is 4.7 x 10(-7) mol L(-1), the linearity range from 2 x 10(-6) mol L(-1) to 7 x 10(-6) mol L(-1), and the correlation coefficient is r=0.9990. No significant interferences were observed from a majority of the investigated ions, such as Zn(II), Pb(II), Mn(II), Cd(II), Co(II) and Ni(II) with the exception of Cu(II), Sb(III), Fe(III), Pd(II), Sn(II) and I(-) ions. The method was successfully applied for the determination of Pt traces in different solid samples and the recovery from inorganic materials was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号