首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flameless atomic absorption sepctrometry (AAS) has been applied to the investigation of the electroreduction of mercury at the glassy carbon (GC) electrode in dilute mercury(II) solution. The atomic mercury which is produced by electrolysis is found both in the electrolyte solution and on the electrode. The evaporation experiment combined with the flameless AAS clearly shows that mercury(0) deposits on the GC electrode as metallic mercury and adatoms depending strongly on the concentration of mercury(II) in the solution. The monolayer formation and underpotential deposition cannot be observed in the mercury(II)/GC electrode system.  相似文献   

2.
Kiekens P  Temmerman E  Verbeek F 《Talanta》1984,31(9):693-701
The reduction of Hg(II) at a glassy-carbon electrode in various electrolytes has been studied by rotating ring-disc voltammetry. Reduction proceeds directly to metallic mercury in a single 2-electron step. However, at the foot of the wave, and only during the first reduction sweep after pretreatment of the electrode surface, a small amount of Hg(I) species is detected at the ring. The appearance of an Hg(I) intermediate is most pronounced in sulphuric acid solution. The reduction of Hg(II) is found to proceed irreversibly and to be of first order. At sufficiently negative potentials the reduction is convective-diffusion controlled. Stripping voltammetric experiments indicate that the dissolution of mercury gives Hg(II) in complexing electrolytes. In non-complexing electrolytes the initially formed Hg(II) reacts with mercury atoms on the electrode surface to give Hg(I). During electrodissolution, two stripping peaks may be observed as a result of underpotential adsorption of mercury on glassy carbon. The difference in peak potential between the adsorption (mono) layer peak and the bulk mercury peak has been related to the difference in work functions of the deposit (mercury) and substrate (carbon). A rotating glassy-carbon electrode has been used for the anodic stripping determination of mercury. When an appropriate amount of a cation such as cadmium(II) or copper(II) is added to the test solution, mercury down to 2 x 10(-9)M (0.4 ng ml ) can be determined in acidified thiocyanate electrolyte with a relative standard deviation of about 22%.  相似文献   

3.
Flameless atomic absorption spectrometry (flameless a.a.s.) was applied to study the state of mercury deposited on a gold plate electrode from very dilute mercury(II) solution by controlled-potential electrolysis. A stable monolayer is formed on the gold electrode by the electrolysis at a potential about 200 mV more positive than the reversible Nernst potential for the reduction of mercury(II) to mercury(0). After the monolayer formation, bulk mercury is deposited on the monolayer at the reversible potential and an adatom layer is also found. The difference of activation free energies between the evaporation of mercury from the monolayer and that from bulk mercury corresponds to the underpotential shift for the electrodeposition of mercury on the gold electrode.  相似文献   

4.
A survey on the iodide-mercury(II) reaction and its analytical uses is given. Titrations of iodide with mercury(II) in various acidities, using nitrate, acetate, and chloride as titrants and silver or platinum amalgam as the indicator electrode, showed that mercury(II) nitrate is the best titrant giving 0.46 V/0.1 ml potential break in comparison with 0.14 V/0.1 ml of mercury(II) chloride and 0.35V/0.1 ml of mercury(II) acetate, all titrants being 0.05 M in mercury(II).  相似文献   

5.
The labilities of copper, lead and cadmium complexes with fulvic acid, nitrilotriacetic acid and an iron-humic acid colloid were studied on a preplated thin mercury film electrode and with in-situ plating of mercury on a glassy carbon electrode. In the presence of mercury(II) the apparent labilities based on direct-current anodic stripping voltammetric peak-area measurements increased for each of the cadmium and lead species and for the copper iron-humic acid colloid species. In contrast, for the copper complexes with nitrilotriacetic acid and fulvic acid the lability was not measurably altered by mercury(II); it is inferred that they do not undergo rapid metal exchange with mercury(II).  相似文献   

6.
A new PVC membrane mercury(II) ion electrode based on N,N-dimethylformamide-salicylacylhydrazone (DMFAS) as an ionophore is described, which shows excellent potentiometric response characteristics and displays a linear log[Hg(2+)] versus EMF response over a wide concentration range between 6.2 x 10(-7) and 8.0 x 10(-2) M with a Nerstian slope of 29.6 mV per decade and a detection limit of 5.0 x 10(-7) M. The response time for the electrode is less than 30 s and the electrode can be used for more than 2 months with less than a 2 mV observed divergence in a potentials. The proposed electrode exhibits very good selectivity for mercury(II) ions over many cations in a wide pH range (pH 1 - 4). The electrode was also applied to the determination of a mercury(II) ion in vegetables and in Azolla filiculoides.  相似文献   

7.
Potentiometric determination of mercury(II) with EDTA using silver amalgam as indicator electrode, is suitable for 200 μg to 100 mg of mercury. Binary mixtures of mercury (II) with several other metals can be analysed by different methods involving masking agents, selective pH and differential titrations.  相似文献   

8.
(Titrimetric determination of thioethers with mercury(II) perchlorate in anhydrous acetic acid media). Thioethers form mercury(II) complexes which are less stable than the thiol complexes. Potentiometric titrations at the millimolar level are possible with a silver amalgam indicating electrode if mercury(II) perchlorate is used as titrant and the medium is anhydrous acetic acid.  相似文献   

9.
Baiulescu GE  Ciocan N 《Talanta》1977,24(1):37-42
The construction and characteristics of a new type of extractive electrode sensitive to Hg(2+)(2) are described. The performance of the electrode is compared with that of an ion-selective electrode with mercurous dithizonate as the active substance. The Hg(2+)(2) -extractive electrode contains Pd(HDz)(2) in its membrane. Its stability and sensitivity are remarkable. It has been used as indicator electrode for the titration of halides alone and in mixtures, and for determination of mercury(I), mercury(II), silver, and of substances containing or reacting with mercury. The basis of the electrode response is discussed.  相似文献   

10.
The effects of changing certain parameters of the applied potential waveform at a dropping mercury electrode (DME) in square-wave voltammetry (s.w.v.) were investigated and compared with theory. Optimum parameters of the waveform are determined for a reversible system, lead(II) in 0.10 M perchloric acid. Current sensitivities for Pb(II) at a static mercury drop electrode by both the integrating and instantaneous current-measurement schemes available in a laboratory computer-based system are compared to those obtained from a commercial instrument suitable for s.w.v. An irreversible system, Ni(II) in 0.10 M HCl, was investigated at the static mercury drop electrode and optimum parameters determined as for Pb(II).  相似文献   

11.
A PVC membrane incorporating p-tert-butyl calix[4]crown with imine units as an ionophore was prepared and used in an ion-selective electrode for the determination of mercury(II) ions. An electrode based on this ionophore showed a good potentiometric response for mercury(II) ions over a wide concentration range of 5.0 x 10(-5) - 1.0 x 10(-1) M with a near-Nernstian slope of 27.3 mV per decade. The detection limit of the electrode was 2.24 x 10(-5) M and the electrode worked well in the pH range of 1.3 - 4.0. The electrode showed a short response time of less than 20 s. The electrode also showed better selectivity for mercury(II) ions over many of the alkali (Na+, -1.69; K+, -1.54), alkaline-earth (Ca2+, -3.30; Ba2+, -3.32), and heavy metal ions (Co2+, -3.67; Ni2+, -3.43; Pb2+, -3.31; Fe3+, -1.82). Ag+ ion was found to be the strongest interfering ion. Also, sharp end points were obtained when the sensor was used as an indicator electrode for the potentiometric titration of mercury(II) ions with iodide and dichromate ions.  相似文献   

12.
Trace mercury is reduced with tin(II) to mercury metal, which is volatilised by bubbling air through the solution. A certain fraction of this mercury is sorbed on a rotating gold disk electrode and stripped in a thiocyanate solution. The detection limit is about 30 ng Hg(II) in solution; the relative standard deviation is 6% for 100 ng Hg(II) (n = 7). The detection limit for mercury in air is 1.7 ng l?1 with a preconcentration time of 10 min.  相似文献   

13.
The analytical possibilities of potentiometric stripping analysis are outlined. The technique comprises reduction of metal ions at a stationary mercury drop or thin-film electrode. The amalgamated metals are then re-oxidized with mercury(II) ions, and the time—potential behaviour of the mercury electrode is recorded. The technique is compared with d.c. and differential pulse anodic stripping analysis.  相似文献   

14.
X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), rotating disc electrode-electrochemical impedance spectroscopy (RDE-EIS) and synchrotron radiation-grazing incidence X-ray diffraction (SR-GIXRD) have been used to study the response mechanism of the mercury(II) chalcogenide ion-selective electrode (ISE) in saline media. XPS and SIMS have shown that the chalcogenide surface is poisoned by silver chloride, or a mixture of silver halides, on continuous exposure to synthetic and real seawater. Significantly, the in-situ SR-GIXRD study demonstrated that electrode fouling in synthetic seawater is linked to the formation of poorly crystalline or amorphous silver chloride, and that the low level of free mercury(II) in a calibration buffer (i.e., 10(-14) M) is able to undergo metathesis with silver(II) sulfide in the membrane generating mercury(II) sulfide. Significantly, the results of this detailed surface study have shown that silver chloride fouling of the electrode is ameliorated in real seawater comprising natural organic ligands, and this has been attributed to the peptization of silver chloride by the surfactant-like nature of seawater ligands at pH 8. RDE-EIS aging studies have revealed that the chalcogenide membrane experiences a sluggish charge transfer reaction in seawater, and contrary to a previous report for a static electrode, the seawater matrix does not passivate the RDE. The results of this XPS, SIMS, RDE-EIS and SR-GIXRD study have elucidated the response mechanism of the mercury(II) ISE in saline media.  相似文献   

15.
SeIenium(IV) at trace levels can be determined in hydrochloric and perchloric acid solutions by alternating current and differential pulse polarography. The use of a hanging mercury drop electrode with accumulation of elemental selenium followed by cathodic stripping gives detection limits in the range 0.1–1 p.p.b. With a dropping mercury electrode the detection limit is 8 p.p.b. The possible interferences of Te(IV), Ge(IV), Cu(II), Cd(II) and Pb(II) are discussed. The serious interference of lead(II) can be prevented by addition of EDTA.  相似文献   

16.
The well‐known method for the determination of mercury(II), which is based on the anodic stripping voltammetry of mercury(II), has been adapted for applications at the thin film poly(3‐hexylthiophene) polymer electrode. Halide ions have been found to increase the sensitivity of the mercury response and shift it more positive potentials. This behavior is explained by formation of mercuric halide which can be easily deposited and stripped from the polymer electrode surface. The procedure was optimized for mercury determination. For 120 s accumulation time, detection limit of 5 ng mL?1 mercury(II) has been observed. The relative standard deviation is 1.3% at 40 ng mL?1 mercury(II). The performance of the polymer film studied in this work was evaluated in the presence of surfactants and some potential interfering metal ions such as cadmium, lead, copper and nickel.  相似文献   

17.
Locatelli C  Fagioli F  Bighi C  Garai T 《Talanta》1985,32(7):539-543
The simultaneous determination of tin(II) and lead(II) as well as of indium(III) and cadmium(II) by second-harmonic a.c. voltanunetry using a semi-stationary mercury electrode with a drop-time of 240-300 sec (the long-lasting sessile-drop mercury electrode) has been investigated. Under the best experimental conditions, concentration ratios in the ranges l:12 c(Sn):c(Pb) 15:1 and 1:15 c(In):c(Cd) 15:1 can be determined.  相似文献   

18.
The behavior of barium(II) at a mercury electrode in 0.1 M KCl and 0.1 to 0.001 M KI solutions was studied by stripping voltammetry. The conditions for barium(II) accumulation on a silver-supported mercury film electrode were selected. Procedures for determining barium in potassium salts by stripping voltammetry were proposed.  相似文献   

19.
A liquid ion-exchange electrode containing a complex of mercury(II) with N-(O,O-diisopropylthiophosphoryl)thiobenzamide in carbon tetrachloride is described. The electrode shows excellent sensitivity and good selectivity. The slope of the calibration graph is 29.0 mV/pHg2+ in the pHg2+ in the pHg2+ range 2–15.2 in mercury(II) ion buffers. The electrode can be used for determination of 5 × 10?5–10?2 M Hg(II) in the presence of 10?2 M Cu(II), Ni(II), Co(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(III), Cr(III), Bi(III) or Al(III) ions and in the presence of 10?3 M Ag(I) ions. It can bealso used for end-point detection in titrations with EDTA of 10?3–10?4 M mercury(II) at pH 2.  相似文献   

20.
《Electroanalysis》2005,17(17):1540-1546
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5‐dimercapto‐1,3,4‐thiadiazole (DTTPSG‐CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range ?0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L?1 KNO3 ; v=20 mV s?1) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG‐CPE. The anodic wave peak at 0.31 V is well‐defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg L?1 Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号