首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of tungsten carbide and titanium nitride nanoparticles on the structure and properties of the weld metal of welded joints made by automatic twin submerged arc welding is considered. The nanoparticles have been introduced into the weld pool as a part of the “master alloy” based on nickel powder (PNE-1 according to GOST 9722). It has been shown that modifying the weld metal with tungsten carbide nanoparticles holds promise for enhancing the impact strength. In addition, it has been found that titanium nitride is prone to dissociation under the same conditions. However, microalloying with titanium, which is due to the release of titanium from the nitride, leads to an increase in the impact strength of the weld metal.  相似文献   

2.
Kamada T  Yamamoto Y 《Talanta》1980,27(6):473-476
A microanalytical method for the measurement of selenium in waters and biological materials by a flameless atomic-absorption technique has been developed. The ammonium pyrrolidinedithiocarbamate-methyl isobutyl ketone extraction system is used for separation from interfering materials such as large amounts of alkali and alkaline earth metal salts and mineral acids. The atomic-absorption sensitivity for selenium is found to be enhanced to a large extent by co-extraction of some transition metal ions. Copper(II) has been used successfully as such an additive to diminish the volatility of selenium in the graphite furnace during the ashing step of the atomization cycle. When the aqueous phase/organic solvent volume ratio is 5 and the volume injected into the graphite furnace is 20 mul, the sensitivity for selenium is 0.3 ng/ml for 1% absorption. The relative standard deviation is ca. 2%. Interference by other metal ions is prevented by masking with EDTA. The method has been applied satisfactorily for the determination of minute amounts of selenium in waters and various biological materials.  相似文献   

3.
Red onion skin is highly effective for binding heavy metal ions from aqueous solutions. Color leaching can be prevented and the physical characteristics of the substrate can be improved by treatment with formaldehyde in an acidic medium. Batch and column experiments have been conducted with Cu2+, Cd2+, Zn2+, Ni2+, Hg2+, and Pb2+. Almost quantitative removal of the metal ions from solution can be achieved by using columns of the treated onion skin. Competition of the various metal ions for the substrate has been investigated. The capacity of the substrate in the majority of the metal ions studied is well above 1 meq/g. The use of polymerized onion skin to remove heavy metal ions from domestic and industrial wastewater to safe levels has been recommended as a cheap and effective alternative for commercial ion-exchange resins.  相似文献   

4.
乔金樑 《高分子科学》2015,33(3):371-375
A novel method for preparing conductive polyethylene(PE) composites has been developed. In the method, the powder of low melting point metal alloy(LMPA) is filled into the PE matrix by using twin screw extruder at a temperature below the melting point of the LMPA, and followed by a die drawing process at a temperature around the melting point of the metal alloy. It has been found that die drawing process, repeating the die drawing process and adding nano-fillers, such as montmorillonite(MMT) and multi-wall carbon nanotubes(MWCNTs), all help reduce the metal particle size in the PE matrix, thus improve the conductivity of the composite. The conductivity improvement is attributed to an increased number of the smaller metal particles. Therefore, conductive composites of polymer/metal alloy/nano-filler with high conductivity are possible to be prepared by using the new method.  相似文献   

5.
The mechanism of chemisorption of aqueous metal ions at surfaces has long been a topical issue in such fields as soil chemistry and bioenvironmental science. Here it is quantitatively demonstrated for the first time that release of water from the inner hydration shell is the rate-limiting step in inner-sphere surface complexation. The reactive intermediate is an outer-sphere complex between metal ion and surface site, with an electrostatically controlled stability defined by Boltzmann statistics. Using tabulated dehydration rate constants for metal ions, the resulting scheme allows for prediction of rates of sorption of aqueous metal ions at any type of complexing surface.  相似文献   

6.
A hypothetical scheme has been proposed for the alkylation of non-transition metals with organyl halides in the presence of binary systems consisting of an organometallic compound and a transition metal compound. The scheme implies catalysis by transition metal atoms, small clusters, and subhalides adsorbed on the surface of metal to be alkylated. These particles are formed during the process as a result of interaction between the binary system components. The alkylation of commercial zinc powder with ethyl bromide has been used as a model reaction to demonstrate that the binary system ethylzinc bromide-copper(I) iodide is superior in its efficiency and experimental simplicity to all other examined methods for stimulation of the alkylation of elements with organyl halides yielding organometallic compounds.  相似文献   

7.
The rapid development of materials science now enables tailoring of metal and metal oxide particles with tunable size and shape at the nanometre level. As a result, nanocatalysis is undergoing an explosive growth, and it has been seen that the size and shape of a catalyst particle tremendously affects the reaction performance. The size effect of metal nanoparticles has been interpreted in terms of the variation in geometric and electronic properties that governs the adsorption and activation of the reactants as well as the desorption of the products. At the same time, it has been verified that the morphology of a catalyst particle, determined by the exposed crystal planes, also considerably affects the catalytic behavior. This is termed as morphology-dependent nanocatalysis: a catalyst particle with an anisotropic shape alters the reaction performance by selectively exposing specific crystal facets. This perspective article initially surveys the recent progress on morphology-dependent nanocatalysis of precious metal particles to emphasise the chemical nature of the morphology effect. Then, the fabrication of transition metal particles with controllable size/morphology is examined, and their shape is correlated with their catalytic properties, with the aim to clarify the structure-reactivity relationship. Finally, the future outlook presents our personal perspectives on the concept of morphology-dependent nanocatalysis of metal particles, which is a rapidly growing topic in heterogeneous catalysis.  相似文献   

8.
The introduction of volatile organic solvents and metal organic complexes into an inductively coupled plasma (ICP) is problematic due to overloading and pyrolysis effects. These include carbon built up in the torch and spectral interferences. As a consequence, solvent extraction as a method for preconcentrating trace metals for the determination by ICP has been limited. In this report a commercial ultrasonic nebulizer-membrane separation interface (USN-MEMSEP) for the direct introduction and separation of organic solvents using ICP atomic emission spectrometry (AES) and a sequential spectrometer has been evaluated for solvent extraction of chelated trace metals. The ability of the MEMSEP to separate volatile organic flows from metal aerosols has been demonstrated by determining the recoveries of several transition metals in an oil-based methyl-isobutyl ketone (MIBK) standard relative to an aqueous solution. However, low recoveries of several metal chelates have been found evidently due to the volatilization of the organic metal species at the boiling point of MIBK (160° C). Moreover, the multielement capability and limits of detection have been limited due to sequential atomic emission detection. Advantages of the technique include enhanced limits of detection (LODs) and reduced plasma and spectral interferences.  相似文献   

9.
The introduction of volatile organic solvents and metal organic complexes into an inductively coupled plasma (ICP) is problematic due to overloading and pyrolysis effects. These include carbon built up in the torch and spectral interferences. As a consequence, solvent extraction as a method for preconcentrating trace metals for the determination by ICP has been limited. In this report a commercial ultrasonic nebulizer-membrane separation interface (USN-MEMSEP) for the direct introduction and separation of organic solvents using ICP atomic emission spectrometry (AES) and a sequential spectrometer has been evaluated for solvent extraction of chelated trace metals. The ability of the MEMSEP to separate volatile organic flows from metal aerosols has been demonstrated by determining the recoveries of several transition metals in an oil-based methyl-isobutyl ketone (MIBK) standard relative to an aqueous solution. However, low recoveries of several metal chelates have been found evidently due to the volatilization of the organic metal species at the boiling point of MIBK (160° C). Moreover, the multielement capability and limits of detection have been limited due to sequential atomic emission detection. Advantages of the technique include enhanced limits of detection (LODs) and reduced plasma and spectral interferences.  相似文献   

10.
The photo-induced synthesis of metal nanoparticles (NPs) was reviewed with a closer look at those based on photochemistry. Recent developments in metal NPs research, photochemistry, and photoprocessing techniques have allowed researchers to devise various photo-induced synthetic strategies to obtain metal NPs under a variety of conditions. We begin by outlining the classical method. The photochemical synthesis of metal NPs including direct photoreduction and photosensitization has been developed to achieve decent yields. We focused on stabilization and functionalization method of NPs in photochemical synthesis, which has enabled us to fabricate a variety of metal nanostructures and composite materials. In addition, we mention an alternative approach, that is, laser ablation at the solid–liquid interface. Some of the most innovative studies dealing with the three-dimensional fabrication of metal NPs are highlighted, together with new directions such as potential applications for a light-driven actuator, bioimaging, and three-dimensional processing. This review is concluded with the future perspectives for the photo-induced synthesis of metal NPs.  相似文献   

11.
The complexation of alkali metal ions with amphiphilic fullerene derivatives has been investigated by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry. The formation of analyte ions occurs via two competing mechanisms including electron transfer from matrix-derived ions and metal ion attachment. The interplay of these processes has been examined by laser fluence dependent sample activation and by variation of the target composition. The attachment of metal ions has been established as the gentler and thus more efficient route towards the formation of intact analyte ions. Investigations into the metal ion complexation have been conducted to reveal the reactivity order of the alkali metals in these reactions and to elucidate the influence of structural differences of the analytes, as well as to unravel effects caused by the anionic counter ion of the metal. The experimental data have been derived by two complementary approaches. Competing reactants were either studied simultaneously, so that the product distribution would provide direct insight into the reactivity pattern, and/or product distributions were obtained in a large variety of separate experiments and normalized for reliable comparison. It has been found that the extent to which complexation is observed follows the charge density order of the alkali metal ions. The structural features of the fullerene-attached ligands were of profound influence on the attachment of the metal ion, inducing enhanced selectivity for the complexation with less reactive metals. The metal ion attachment is reduced with the use of smaller anionic counter ions. Rationalization of these findings is provided within the framework of the mechanisms of ion formation in MALDI.  相似文献   

12.
Chemical looping combustion (CLC) of carbonaceous compounds has been proposed, in the past decade, as an efficient method for CO2 capture without cost of extra energy penalties. The technique involves the use of a metal oxide as an oxygen carrier that transfers oxygen from combustion air to fuels. The combustion is carried out in a two-step process: in the fuel reactor, the fuel is oxidized by a metal oxide, and in the air reactor, the reduced metal is oxidized back to the original phase. The use of iron oxide as an oxygen carrier has been investigated in this article. Particles composed of 80 wt% Fe2O3, together with Al2O3 as binder, have been prepared by impregnation methods. X-ray diffraction (XRD) analysis reveals that Fe2O3 does not interact with the Al2O3 binder after multi-cycles. The reactivity of the oxygen carrier particles has been studied in twenty-cycle reduction-oxidation tests in a thermal gravimetrical analysis (TGA) reactor. The components in the outlet gas have been analyzed. It has been observed that about 85% of CH4 converted to CO2 and H2O during most of the reduction periods. The oxygen carrier has kept quite a high reactivity in the twenty-cycle reactions. In the first twenty reaction cycles, the reaction rates became slightly higher with the number of cyclic reactions increasing, which was confirmed by the scanning electron microscopy (SEM) test results. The SEM analysis revealed that the pore size inside the particle had been enlarged by the thermal stress during the reaction, which was favorable for diffusion of the gaseous reactants into the particles. The experimental results suggested that the Fe2O3/Al2O3 oxygen carrier was a promising candidate for a CLC system.  相似文献   

13.
Density functional theory together with Car-Parrinello ab initio molecular dynamics simulation has been used to investigate the free energy profiles (FEP) of monomer capture in Grubbs- and SHOP-type olefin polymerization catalysts. The FEPs along the reaction coordinates at 300 K were determined directly by a point wise thermodynamic integration technique. Comparison between potential energy profile (PEP) and the FEP has been made. The results show that, for both catalysts, the PEP for the monomer ethylene uptake by the metal center is a typical Morse curve without energy barrier. However, a small barrier (1.8 kcal/mol for Grubbs catalyst and 2.4 kcal/mol for SHOP catalyst) exists on the FEP. The pi complexation energy on the FES at 300 K is higher by 10-12 kcal/mol over that on the PES. The differences between FES and PES are due to entropy contribution. Slow growth simulations on the ethylene capture process show that the ethylene attacks the metal center by an asynchronous mode. This indicates that the forming of the pi-bonding between the metal and ethylene is initiated by electrophilic attack of the metal to one of the ethylene carbons.  相似文献   

14.
Amongst the many ways of constructing the amide bond, there has been a growing interest in the use of metal-catalysed methods for preparing this important functional group. In this tutorial review, highlights of the recent literature have been presented covering the key areas where metal catalysts have been used in amide bond formation. Acids and esters have been used in coupling reactions with amines, but aldehydes and alcohols have also been used in oxidative couplings. The use of nitriles and oximes as starting materials for amide formation are also emerging areas of interest. The use of carbon monoxide in the transition metal catalysed coupling of amines has led to a powerful methodology for amide bond formation and this is complemented by the addition of an aryl or alkenyl group to an amide typically using palladium or copper catalysts.  相似文献   

15.
The ab initio two-state model for electron transfer induced by an external electric field has been applied to the chloride oxidation on Cu, Rh, Pd, Ag, Pt and Au (001) surface models. The two electronic states involved in the model represent physical situations where the electron transferred from the chloride anion to the metal surface lies either on the halide or on the metal substrate. The model assumes that electron transfer takes place when these two states become degenerate and this is achieved by applying an external electric field. Two different situations representing either ultrahigh vacuum or electrochemical conditions have been considered. For the former the present study shows that electric field necessary to achieve degeneracy of the two electronic states is directly related to the metal surface work function whereas for the latter, it is found to be rather insensitive to the metal surface.  相似文献   

16.
The synthesis, characterization and ion binding studies of 2,3-di(1H-2-pyrrolyl)pyrido[2,3-b]pyrazine (1) have been described. 1, which has been targeted with a view to sensing both F- and transition metal ions, exhibits binding-induced color changes from yellowish green to red/brown observable by the naked eye. The binding site for the metal ion in the system has been unambiguously established by single-crystal X-ray diffraction study of a Ni(II) complex of 1. While the estimated value of the binding constant of 1 with F- is 4.9 x 10(3) M(-1), the binding constants for the cations are found to be two orders higher in magnitude in acetonitrile. Even though 1 possesses two separate binding sites for F- and metal ions, it is shown that the presence of the cation influences the binding of the anion and vice versa. The binding constant values of an ion in the presence of oppositely charged species are measured to be significantly lower.  相似文献   

17.
The study of metal–protein interactions is an expanding field of research investigated by bioinorganic chemists as it has wide applications in biological systems. Very recently, it has been reported that it is possible to study metal–protein interactions by immobilizing biomolecules on metal surfaces and applying experimental approaches based on plasmonics which have usually been used to investigate protein–protein interactions. This is possible because the electronic structure of metals generates plasmons whose properties can be exploited to obtain information from biomolecules that interact not only with other molecules but also with ions in solution. One major challenge of such approaches is to immobilize the protein to be studied on a metal surface with preserved native structure. This review reports and discusses all the works that deal with such an expanding new field of application of plasmonics with specific attention to surface plasmon resonance, highlighting the advantages and drawbacks of such approaches in comparison with other experimental techniques traditionally used to study metal–protein interactions.
Figure
Plasmonics is a powerful tool for the study of metal ion-protein interactions  相似文献   

18.
A close relationship has been found between the metal radii, cationic radii and electronic configurations of elements. A unified formula for calculating metal radii is presented, whose paramatem are only related to the electronic configuration. Meanwhile theoretical relation between cationic radii and electronic configuration can be revealed by combining quantitative analysis with qualitative analysis. The calculated results and the charts of standard deviations are coincident with those given by reference books. Our work indicates that the metal radius and cationic radius of an element reflect in essence the element's configuration.  相似文献   

19.
A novel one-pot reaction producing a metal vinylidene structure in a five-membered ring by cyclization of a multiyne has been achieved. The ring strain and the high stability of the cyclic metal vinylidene complexes have been analyzed experimentally and computationally. The metal vinylidene unit in a fused-ring complex is unreactive to both nucleophiles and electrophiles. It reacts however at the nearby carbonyl group achieving the unprecedented conversion of metal tributing factors for the aromaticity-driven process has been studied by DFT calculations.  相似文献   

20.
Traditional anodic stripping voltammetry (ASV) involves electrodeposition (reduction) of metal ions from solution over some time scale onto a working electrode followed by stripping (oxidation) of the deposited metal in a second step, where the stripping potential and quantity of charge passed provide information about the metal identity and solution concentration, respectively. ASV has recently been extended to the analysis of metal nanoparticles (NPs), which have grown popular because of their fascinating properties tunable by size, shape, and composition. There is a need for improved methods of NP analysis, and because metal NPs can be oxidized to metal ions, ASV is a logical choice. Early studies involved metal NPs as tags for the detection of biomolecules. More recently, anodic stripping has been used to directly analyze the physical, chemical, and structural properties of metal NPs. This review highlights the stripping analysis of NP assemblies on macroelectrodes, individual NPs in solution during collisions with a microelectrode, and a single NP attached to an electrode. A surprising amount of information can be learned from this very simple, low-cost technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号