首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we report method development work to determine geniposide using LC/MS/MS via the formation of positive and negative ion adducts. Geniposide, which has been recognized to have choleretic effects, is the major iridoid glycoside component of Gardenia herbs. To enhance the sensitivity of LC/MS detection of geniposide, a small amount of volatile additives such as ammonium acetate and acetic acid are added into mobile phase solvents to form positive and negative adducts, which can then ionize via electrospray processes. The formation of positive adducts is due to the complexation between geniposide and ammonium ions ([M + NH4]+). The formation of anionic adducts [M + CH3COO] is believed to occur via hydrogen bonds bridging acetate ions and glucose groups on the geniposide molecule. Mobile phase solvents containing acetonitrile and aqueous solution (0.2 mM ammonium acetate or 0.1% acetic acid) at the ratio 15: 85 are employed to elute geniposide using C8 reverse phase liquid chromatography columns with electrospray tandem mass spectrometry determinations. Using geniposide standards, the methods are validated at the concentration ranges of 5 to 1000 ng/mL and 20 to 5000 ng/mL using ammonium and acetate adducts respectively. The correlation coefficients of the standard curves are 0.9999 using both ammonium and acetate adducts. The detection limits of using ammonium and acetate adducts are 1 and 5 ng/mL respectively. The measurement accuracy and precision of using ammonium adducts are within 12% and 3% respectively, whereas the accuracy and precision are within 6 and 11% respectively using acetate adducts. When the validated calibration curves of the ammonium adduct of geniposide are used to determine spiked control samples in rat blood dialysates, the determination errors of accuracy and precision are within 12% and 10% respectively.  相似文献   

2.
A sensitive and efficient liquid chromatography-mass spectrometry (LC-MS) method was developed and validated for the simultaneous determination of geniposide, 6α-hydroxygeniposide, and genipin gentiobioside in rat plasma. After the addition of internal standard (I.S.) salidroside and acidification (formic acid, 0.1%), plasma samples were carried out by protein precipitation with acetonitrile and separated on a Kromasil C(18) column (200 mm × 4.6 mm, 5 μm) within a runtime of 15.0 min. The linear ranges were 2-250 ng/mL for both 6α-hydroxygeniposide and genipin gentiobioside and 2-2000 ng/mL for geniposide, respectively. The lower limit of quantification (LLOQ) was 2 ng/mL for all the analytes. The validated method was successfully applied to the pharmacokinetics study of geniposide, 6α-hydroxygeniposide, and genipin gentiobioside in rats after oral administration of Zhi-zi-chi decoction.  相似文献   

3.
A sensitive and simple liquid chromatography-tandem mass spectrometry method for the determination of midazolam and 1'-hydroxymidazolam in human plasma has been developed and validated with a dynamic range of 0.1-250 ng/mL. The analysis was based on semi-automated liquid-liquid extraction followed by evaporation of the extraction solvent, reconstitution and chromatography on a reversed-phase C(18) column. The mobile phase consists of 5 mm ammonium acetate and methanol and runs in gradient at a flow rate of 0.25 mL/min with column temperature of approximately 20 degrees C. The entire column effluent was transferred into the LC-MS/MS interface operated in positive electrospray ionization mode. The chromatographic run time was 4.3 min per injection, with retention times for midazolam, 1'-hydroxymidazolaml and the internal standard, triazolam, of 2.5, 2.3 and 2.1 min, respectively. The intra-day and inter-day precision (RSD %) and accuracy (bias %) of the quality control samples were <15.0% and within +/-13%, respectively. The current method has been applied to a clinical drug-drug interaction study in human.  相似文献   

4.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of zafirlukast (ZFK) with 500 microL human plasma using valdecoxib as an internal standard (IS). The API-4,000 LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of ZFK and IS from human plasma with ethyl acetate. The resolution of peaks was achieved with 10 mm ammonium acetate (pH 6.4):acetonitrile (20:80, v/v) on a Hypersil BDS C(18) column. The total chromatographic run time was 2.0 min and the elution of ZFK and IS occurred at approximately 1.11 and 1.58 min, respectively. The MS/MS ion transitions monitored were 574.2 --> 462.1 for ZFK and 313.3 --> 118.1 for IS. The method was proved to be accurate and precise at a linearity range of 0.15-600 ng/mL with a correlation coefficient (r) of >or=0.999. The method was rugged with 0.15 ng/mL as lower limit of quantitation. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of 20 mg ZFK tablet.  相似文献   

5.
A simple, specific, fast and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous analysis of delapril (DEL) and manidipine (MAN) from their combination formulation was developed and validated using fesoterodine as the internal standard (IS). The LC-MS/MS method was carried out on a Luna C8 column (50 × 3.0 mm i.d., 3 μm) with a mobile phase consisting of methanol and 10 mmol L(-1) ammonium acetate (90 : 0, v/v), run at a flow rate of 0.25 mL min(-1). The mass spectrometry method was performed employing positive electrospray ionization operating in multiple reaction monitoring mode, monitoring the transitions of m/z 453.1 → 234.1 for DEL, m/z 611.1 → 167.0 for MAN and m/z 412.2 → 223.0 for IS. The total analysis time was 3 min and the method was linear in the concentration range of 6-1080 ng mL(-1) and 2-360 ng mL(-1) for DEL and MAN, respectively. Parameters investigated for the method validation, such as the specificity, linearity, precision, accuracy and robustness, gave results within the acceptable range. Moreover, the proposed method was successfully applied for the simultaneous determination of DEL and MAN and the results were compared to validated liquid chromatography and capillary electrophoresis methods showing non-significant differences (P = 0.9).  相似文献   

6.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously determine mifepristone and monodemethyl-mifepristone in human plasma using levonorgestrel as the internal standard (IS). After solid-phase extraction of the plasma samples, mifepristone, monodemethyl-mifepristone and the IS were subjected to LC-MS/MS analysis using electro-spray ionization (ESI) in the multiple reaction monitoring (MRM) mode. Chromatographic separation was performed on an XTERRA MS C(18) column (150 x 2.1 mm i.d., 5 microm). The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration ranges of 5-2000 ng/mL for mifepristone and monodemethyl-mifepristone. The recoveries of the method were found to be 94.5-103.7% for mifepristone and 70.7-77.3% for monodemethyl-mifepristone. The method had a lower limit of quantification (LLOQ) of 5.0 ng/mL and a lower limit of detection (LOD) of 1.0 ng/mL for both mifepristone and monodemethyl-mifepristone. The intra- and inter-batch precision was less than 15% for all quality control samples at concentrations of 10, 100 and 1000 ng/mL. These results indicate that the method was efficient with a short run time (4.5 min) and acceptable accuracy, precision and sensitivity. The validated LC-MS/MS method was successfully used in a pharmacokinetic study in healthy female volunteers after oral administration of 25 mg mifepristone tablet.  相似文献   

7.
A liquid chromatographic tandem mass spectrometric (LC-MS/MS) assay was developed and validated to determine valproic acid in human plasma. The method involved a solid-phase extraction of valproic acid and betamethasone valerate, an internal standard, from plasma and detection using an LC-MS/MS system with electrospray ionization source in negative ion mode. Separation was achieved within 3 min on a non-porous silica column with mobile phase containing ammonium acetate and methanol. Multiple reaction monitoring was utilized for detection monitoring at 142.89-142.89 for valproic acid and 457.21-457.21 for the internal standard. The calibration curve for valproic acid was linear over the range of 0.5-150 microg/mL. The limit of detection was 0.17 microg/mL and the lower limit of quantification was 0.5 microg/mL, when 0.2 mL plasma was used for extraction. The percentage coefficient of validation for accuracy and precision (inter- and intra-day) for this method was less than 9.5% with recovery ranging from 82.3 to 86.9% for valproic acid.  相似文献   

8.
N-nitroso-N-methyl-4-aminobutyric acid (NMBA) is the third N-nitrosamine impurity found in sartans. Herein, a sensitive and stable LC-MS/MS method with multiple reactions monitoring mode has been developed for the quantitative determination of NMBA in four sartan substances. The effective separation of NMBA and sartan substances was achieved on a C18 column under gradient elution conditions. The mass spectrometry method of the atmospheric pressure chemical ionization source and internal standard method was selected as the quantitative analysis method of NMBA. Then, this proposed LC-MS/MS analysis method was validated in terms of specificity, sensitivity, linearity, accuracy, precision and stability. Good linearity with correlation coefficient over 0.99 was obtained at the NMBA concentration of 3–45 ng/mL, and the limit of quantification was 3 ng/mL. Additionally, the recoveries of NMBA in four sartan substances ranged from 89.9% to 115.7%. The intra-day and inter-day relative standard deviation values were less than 5.0%. In conclusion, this developed determination method for NMBA through liquid chromatography–tandem mass spectrometry showed the characteristics of good sensitivity, high accuracy and precision, which will be of great help for the quantitative analysis of NMBA in sartan products.  相似文献   

9.
Sirolimus is a hydrophobic macrolide compound that has been used for long-term immunosuppressive therapy, prevention of restenosis, and treatment of lymphangioleiomyomatosis. In this study, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for the simultaneous determination of sirolimus in both porcine whole blood and lung tissue. Blood and lung tissue homogenates were deproteinized with acetonitrile and injected into the LC-MS/MS system for analysis using the positive electrospray ionization mode. The drug was separated on a C18 reversed phase column with a gradient mobile phase (ammonium formate buffer (5 mM) with 0.1% formic acid and acetonitrile) at 0.2 mL/min. The selected reaction monitoring transitions of m/z 931.5 → 864.4 and m/z 809.5 → 756.5 were applied for sirolimus and ascomycin (the internal standard, IS), respectively. The method was selective and linear over a concentration range of 0.5–50 ng/mL. The method was validated for sensitivity, accuracy, precision, extraction recovery, matrix effect, and stability in porcine whole blood and lung tissue homogenates, and all values were within acceptable ranges. The method was applied to a pharmacokinetic study to quantitate sirolimus levels in porcine blood and its distribution in lung tissue following the application of stents in the porcine coronary arteries. It enabled the quantification of sirolimus concentration until 2 and 14 days in blood and in lung tissue, respectively. This method would be appropriate for both routine porcine pharmacokinetic and bio-distribution studies of sirolimus formulations.  相似文献   

10.
An assay based on protein precipitation and liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed and validated for the quantitative analysis of lisinopril in human plasma. After the addition of enalaprilat as internal standard (IS), plasma samples were prepared by one-step protein precipitation using perchloric acid followed by an isocratic elution with 10 mm ammonium acetate buffer (pH adjusted to 5.0 with acetic acid)-methanol (70:30, v/v) on a Phenomenex Luna 5 mu C(18) (2) column. Detection was performed on a triple-quadrupole mass spectrometer utilizing an electrospray ionization (ESI) interface operating in positive ion and selected reaction monitoring (SRM) mode with the precursor to product ion transitions m/z 406 --> 246 for lisinopril and m/z 349 --> 206 for enalaprilat. Calibration curves of lisinopril in human plasma were linear (r = 0.9973-0.9998) over the concentration range 2-200 ng/mL with acceptable accuracy and precision. The limit of detection and lower limit of quantification in human plasma were 1 and 2 ng/mL, respectively. The validated LC-MS/MS method has been successfully applied to a preliminary pharmacokinetic study of lisinopril in Chinese healthy male volunteers.  相似文献   

11.
A UPLC/MS/MS method with simple protein precipitation has been validated for the fast simultaneous analysis of agomelatine, asenapine, amisulpride, iloperidone, zotepine, melperone, ziprasidone, vilazodone, aripiprazole and its metabolite dehydro‐aripiprazole in human serum. Alprenolol was applied as an internal standard. A BEH C18 (2.1 × 50 mm, 1.7 µm) column provided chromatographic separation of analytes using a binary mobile phase gradient (A, 2 mmol/L ammonium acetate, 0.1% formic acid in 5% acetonitrile, v/v/v; B, 2 mmol/L ammonium acetate, 0.1% formic acid in 95% acetonitrile, v/v/v). Mass spectrometric detection was performed in the positive electrospray ionization mode and ion suppression owing to matrix effects was evaluated. The validation criteria were determined: linearity, precision, accuracy, recovery, limit of detection, limit of quantification, reproducibility and matrix effect. The concentration range was as follows: 0.25–1000 ng/mL for agomelatine; 0.25–100 ng/mL for asenapine and iloperidone; 2.5–1000 ng/mL for amisulpride, aripiprazole, vilazodone and zotepine; 2.3–924.6 ng/mL for dehydroaripiprazole; 2.2–878.4 ng/mL for melperone; and 2.2–883.5 ng/mL for ziprasidone. Limits of quantitation below a therapeutic reference range were achieved for all analytes. Intra‐run precision of 0.4–5.5 %, inter‐run precision of 0.6–8.2% and overall recovery of 87.9–114.1% were obtained. The validated method was successfully implemented into routine practice for therapeutic drug monitoring in our hospital. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of doxofylline (DFL) with 300 microL human serum using imipramine as the internal standard (IS). The API-3,000 LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved direct precipitation of DFL and IS from human serum with acetonitrile. The resolution of peaks was achieved with formic acid (pH 2.5): acetonitrile (10:90, v/v) on an Amazon C(18) column. The total chromatographic run time was 3.0 min and the elution of DFL and IS occurred at approximately 1.46 and 2.15 min, respectively. The MS/MS ion transitions monitored were 267.5 --> 181.1 for DFL and 281.1 --> 86.2 for IS. The method was proved to be accurate and precise at linearity range of 1.00-5,000 ng/mL with a correlation coefficient (r) of >or=0.999. The method was rugged with 1.00 ng/mL as lower limit of quantitation. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of DFL tablet.  相似文献   

13.
A sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of sodium cromoglycate (SCG) in human plasma after a nasal dose of 10.4 mg sodium cromoglycate nasal spray, using pravastatin sodium as the internal standard. The method was validated over a linear range of 0.300-20.0 ng/mL. SCG and I.S. were extracted from 1.0 mL of heparinized plasma by C(18) solid-phase extraction cartridges using methanol as eluting solvent. The dried residue was reconstituted with 100 microL of mobile phase, and 10 microL was injected onto the LC-MS/MS system. Chromatographic separation was achieved on a C(18) column (250 x 4.6 mm i.d., 5 microm particle size) with a mobile phase of methanol-acetonitrile-water (containing 2 mmol/L ammonium acetate; 42.5:42.5:15, v/v/v) at a flow rate of 0.4 mL/min. The analytes were detected with a triple quad LC-MS/MS using ESI with positive ionization. Ions monitored in the multiple reaction monitoring mode were m/z 469.0 (precursor ion) to m/z 245.0 (product ion) for SCG and m/z 447.2 (precursor ion) to m/z327.1 (product ion) for pravastatin sodium (internal standard) The average recovery of SCG from human plasma was 94.88% and the lower limit of quantitation was 0.3 ng/mL. Results from a 3-day validation study demonstrated excellent precision and accuracy across the calibration range of 0.3-20 ng/mL. The method was successfully applied to the pharmacokinetic study of SCG in healthy Chinese volunteers. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of rhein with 100 microL human plasma using celecoxib as an internal standard (IS). The API-4,000 Q-Trap LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of rhein and IS from human plasma with acetonitrile, which yielded consistent recoveries of 36.01 and 65.85% for rhein and IS, respectively. The total chromatographic run time was 5.0 min and the elution of rhein and IS occurred at approximately 1.60 and 3.96 min, respectively. The resolution of peaks was achieved with 0.01 m ammonium acetate (pH 6.0):acetonitrile:methanol (30:58:12, v/v) on an Inertsil ODS-3 column. The method was proved to be accurate and precise at a linearity range of 0.005-5.00 microg/mL with a correlation coefficient (r) of >or=0.995. The lower limit of quantitation was 0.005 microg/mL. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. Rhein was found to be stable in the battery of stability studies. The application of the assay to pre-clinical pharmacokinetic studies confirmed the utility of the assay to derive pharmacokinetic parameters.  相似文献   

15.
A simple, sensitive, and rapid liquid chromatographic/tandem mass spectrometric (LC/MS/MS) method, using electrospray ionization, was developed and validated to quantify trimetazidine in human plasma using propranolol hydrochloride as an internal standard (IS). Samples were prepared by solid-phase extraction and analyzed without drying and reconstitution. The analyte and IS were chromatographed on a C18 reversed-phase column under isocratic conditions using 2 mM ammonium acetate (pH 3.5)-acetonitrile (40 + 60, v/v) as the mobile phase with a run time of 2.0 min. Quantitation was done on a triple-quadrupole mass analyzer API-3000, equipped with turbo ion spray interface and operating in multiple reaction monitoring mode to detect parent --> product ion (m/z 267.2 --> 181.4) transition. The method was validated for sensitivity, accuracy and precision, linearity, recovery, matrix effect, and stability. Linearity in plasma was observed over the concentration range of 1.5-300 ng/mL. Lower limit of quantification achieved was 1.5 ng/mL with precision < 10% using 10 microL injection volume. The mean relative recovery of analyte (97.36%) and IS (99.93%) was consistent and reproducible. Interbatch and intrabatch precision was < 8.0% and the accuracy determined was within +/- 8% in terms of relative error.  相似文献   

16.
A sensitive and reliable LC–MS/MS method was developed and validated for simultaneous quantification of the major components of Huangqi–Honghua extact in rat plasma, including hydroxysafflor yellow A (HSYA), astragaloside IV (ASIV), calycosin‐7‐O‐β‐d ‐glucoside (CAG), calycosin, calycosin‐3′‐O‐glucuronide (C‐3′‐G) and calycosin‐3′‐O‐sulfate (C‐3′‐S). After extraction by protein precipitation with acetonitrile and methanol from plasma, the analytes were separated on a Hypersil BDS C18 column by gradient elution with acetonitrile and 5 mM ammonium acetate. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source switched between negative and positive modes. HSYA was monitored in negative ionization mode from 0 to 4.9 min, and ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S were determined in positive ionization mode from 4.9 to 10 min. The lower limits of quantification of the analytes were 6.25 ng/mL for HSYA, 0.781 ng/mL for CAG and 1.56 ng/mL for ASIV and calycosin. The intra‐ and inter‐assay precision (RSD) values were within 13.43%, and accuracy (RE) ranged from ?8.75 to 9.92%. The validated method was then applied to the pharmacokinetic study of HSYA, ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S in rat after an oral administration of Huangqi–Honghua extract.  相似文献   

17.
A liquid chromatographic method with tandem mass spectrometric detection (LC-MS/MS) for the determination of N-methyl-4-isoleucine-cyclosporin (NIM811) was developed and validated over the concentration range 1-2500 ng/mL in human whole blood using a 0.05 mL sample volume. NIM811 and the internal standard, d(12)-cyclosporin A (d(12)-CsA), were extracted from blood using MTBE via liquid-liquid extraction. After evaporation of the organic solvent and reconstitution, a 10 microL aliquot of the resulting extract was injected onto the LC-MS/MS system. Chromatographic separation of NIM811 and internal standard was performed using a Waters Symmetry RP-8 (50 x 4.6 mm, 3 microm particle size) column. The mobile phase consists of 10 mm ammonium acetate in water (A) and acetonitrile (B), with 45% B from 0 to 0.2 min, 45 to 85% B from 0.2 to 0.8 min and 85% B from 0.8 to 2.2 min. The total run time was 3.5 min with a flow rate of 0.8 mL/min. The method was validated for sensitivity, linearity, reproducibility, stability, dilution integrity and recovery. The precision and accuracy of quality control samples at low (2.00 ng/mL), medium (20.0 and 400 ng/mL) and high (2000 ng/mL) concentrations were in the range 1.1-4.3% relative standard deviation (RSD) and -2.5-10.0% (bias), respectively, from three validation runs. The method has been used to measure the exposure of NIM811 in human subjects.  相似文献   

18.
Yuhui Yang 《Talanta》2007,71(2):596-604
A high-performance liquid chromatography-tandem mass spectrometric method (LC-MS/MS) has been developed and validated for the determination of daunorubicin in K3EDTA rat plasma. The 100 μL plasma samples were extracted by a methanol:acetone protein precipitation step in the presence of additional 50 μL of 70% (w/v) zinc sulfate, and subsequently analyzed by LC/MS/MS using positive turbo-ion spray ionization mode. The LC/MS/MS instrument was operated in the multiple-reaction-monitoring (MRM) mode. Doxorubicinol was better than doxorubicin as the internal standard because its recovery and absolute matrix effect data exactly matched with those for daunorubicin. In addition, HPLC gradient condition was optimized to thoroughly separate daunorubicin from the background interference. The validated concentration range was from 0.250 to 100 ng/mL. The true recoveries of daunorubicin and doxorubicinol were 93.2% and 93.6%, respectively. In addition, the ion-suppression data of daunorubicin and doxorubicinol were 78.2% and 78.4%, respectively. Absence of the relative matrix effect from six unique lots was confirmed. Results obtained from the GLP validation study demonstrated very good accuracy (95-105%) and precision (less than 10% CV).  相似文献   

19.
When cultivated with Aspergillus niger, geniposide, an important drug, is transformed into genipin and genipinine. A simple and rapid HPLC method for simultaneous determination of geniposide and its two metabolites in broth of A. niger is described. The chromatographic separation was achieved on a C18 ODS column (250 x 4.6 mm) by gradient elution with 0.1% formic acid in water and 0.1% formic acid in acetonitrile as the gradient mixtures. The flow rate was 1 mL/min, the detection wavelength was 238 nm and the column temperature was kept at 28 degrees C. The retention times of geniposide, genipin and genipinine were 10.9, 13.8 and 21.5 min, respectively. The mean absolute recoveries of three analysts were over 98%. Quantification limits were 0.01 microg/mL for geniposide and 0.02 microg/mL for the two metabolites. The method was applied for the quantification of geniposide, genipin and genipinine during fermentation and the evaluation of the bioavailabilities of these three compounds in Caco-2 monolayer.  相似文献   

20.
An analytical method for the determination of bisoprolol in human plasma has been developed based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analyte and internal standard (IS) diphenhydramine were cleaned up by protein precipitation with acetonitrile, reconstituted in mobile phase and separated by reversed-phase high-performance liquid chromatography (HPLC) using methanol:10 mm ammonium acetate:formic acid (70:30:0.1 v/v/v) as mobile phase. Detection was carried out by multiple reaction monitoring (MRM) on an LC-MS/MS system and was completed within 2.5 min. The assay was linear over the range 0.5-100 ng/mL with a limit of quantitation (LOQ) of 0.5 ng/mL. The intra- and inter-day precision levels were within 5.54 and 9.95%, respectively, while the accuracy was in the range 89.4-113%. This method has been utilized in a pharmacokinetic study, where healthy volunteers were treated with an oral dose of 5 mg bisoprolol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号