首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al-Bazi SJ  Chow A 《Talanta》1983,30(7):487-492
The mechanism of sorption of the palladium(II) thiocyanate complex by polyether-type Polyurethane foam has been investigated. At low thiocyanate concentration, palladium is most likely extracted as Pd(SCN)(2). The results obtained in the presence of enough thiocyanate for formation of the Pd(SCN)(4)(2-) complex are in disagreement with several possible mechanisms for sorption of the anionic metal complex by the foam, such as adsorption, solvent extraction, ligand addition or exchange, and weak or strong base anion-exchange. The extraction of Pd(SCN)(4)(2-) at high pH increased in the order Li(+)< Na(+) < Cs(+)< Rb(+) < K(+)< NH(4)(+) which is in good relation with the "cation-chelation" mechanism. This mechanism was also found predominant in the extraction of Pd(SCN)(4)(2-) complex from hydrochloric acid solutions.  相似文献   

2.
The extraction of PD(II) by tri-isobutylphosphine sulphide, TIBPS (Cyanex 47 1x), in toluene from aqueous chloride solutions (containing small amounts of thiocyanate) has been investigated. The extraction is enhanced by the presence of thiocyanate, owing to formation of mixed-ligand Pd(II)-Cl(-)-SCN(-)-TIBPS complexes. Analysis of the metal distribution suggests the formation of PdCl(SCN).TIBPS, PdCl(SCN).2TIBPS, Pd(SCN)(2).TIBPS and Pd(SCN)(2).2TIBPS in the organic phase. The equilibrium constants are logK(111) =9.56, logK(112) =12.70, logK(121) =14.73 and logK(122) =17.17, respectively. The ultraviolet absorption spectra of the organic phase support the hypothesis of formation of mixed-ligand complexes.  相似文献   

3.
This article presents a combined experimental and computational study of [Cu(tppz)(SCN)2], where ttpz stands for 2,3,5,6-tetra-(2-pyridyl)pyrazine. The compound has been studied by IR, UV–Vis spectroscopy, and single crystal X-ray analysis. The geometry around copper atom may be described as a distorted square pyramid. The equatorial plane is defined by three nitrogen atoms of tppz and one nitrogen atom of thiocyanate group. The apical site is occupied by nitrogen atom of the second SCN? ion. The electronic spectrum of [Cu(tppz)(SCN)2] was analyzed, and bands were assigned through the DFT/TDDFT procedures.  相似文献   

4.
Five novel transition metal complexes [Cd(II) (3)(tpba-2)(2)(SCN)(6)].6 THF.3 H(2)O (1), [Cu(II) (3)(tpba-2)(2)(SCN)(6)].6 THF.3 H(2)O (2), [Ni(II) (3)(tpba-2)(2)(SCN)(6)].6 THF.3 H(2)O (3), [Cd(II) (2)(tpba-2)(SCN)(3)]ClO(4) (4), [Cu(I) (3)(SCN)(6)(H(3)tpba-2)] (5) [TPBA-2 = N',N',N'-tris(pyrid-2-ylmethyl)-1,3,5-benzenetricarboxamide, THF=tetrahydrofuran] were obtained by reactions of the corresponding transition metal salts with TPBA-2 ligand in the presence of NH(4)SCN using layering or solvothermal method, respectively. The results of X-ray crystallographic analysis showed that complexes 1, 2 and 3 are isostructural and have the same 2D honeycomb network structure with Kagomé lattice, in which all the M(II) (M = Cd, Cu, Ni) atoms are six-coordinated, and the TPBA-2 ligands adopt cis,cis,cis conformation while the thiocyanate anions act as terminal ligands. Capsule-like motifs are found in 1, 2 and 3, in which six THF molecules are hosted, and the results of XPRD and solid-state (13)C NMR spectral measurements showed that the compound 1 can selectively desorb and adsorb THF molecules occurring along with the re-establishment of its crystallinity. In contrast to 1, 2 and 3, complex 4 has different 2D network structure, resulting from TPBA-2 ligands with cis,trans,trans conformation, thiocyanate anions serving as end-to-end bridging ligands, and the incomplete replacement of perchlorate anions, which further link the 2D layers into 3D framework by the hydrogen bonds. In complex 5, the Cu(II) atoms are reduced to Cu(I) during the process of solvothermal reaction, and the Cu(I) atoms are connected by thiocyanate anions to form a 3D porous framework, in which the protonated TPBA-2 ligands are hosted in the cavities as templates.  相似文献   

5.
This study has examined the kinetics of the decomposition of nitrosyl thiocyanate (ONSCN) by stopped flow UV-vis spectrophotometry, with the reaction products identified and quantified by infrared spectroscopy, membrane inlet mass spectrometry, ion chromatography, and CN(-) ion selective electrode. The reaction results in the formation of nitric oxide and thiocyanogen, the latter decomposing to sulfate and hydrogen cyanide in aqueous solution. The rate of consumption of ONSCN depends strongly on the concentration of SCN(-) ions and is inhibited by nitric oxide. We have developed a reaction mechanism that comprises three parallel pathways for the decomposition of ONSCN. At high thiocyanate concentrations, two reaction pathways operate including a second order reaction to generate NO and (SCN)(2) and a reversible reaction between ONSCN and SCN(-) producing NO and (SCN)(2)(-), with the rate limiting step corresponding to the consumption of (SCN)(2)(-) by reaction with ONSCN. The third reaction pathway, which becomes significant at low thiocyanate concentrations, involves formation of a previously unreported species, ONOSCN, via a reaction between ONSCN and HOSCN, the latter constituting an intermediate in the hydrolysis of (SCN)(2). ONOSCN contributes to the formation of NO via homolysis of the O-NO bond and subsequent dimerization and hydrolysis of OSCN. Fitting the chemical reactions of the model to the experimental measurements, which covered a wide range of reactant concentrations, afforded estimation of all relevant kinetic parameters and provided an excellent match. The reaction mechanism developed in this contribution may be applied to predict the rates of NO formation from ONSCN during the synthesis of azo dyes, the gassing of explosive emulsions, or nitrosation reactions occurring in the human body.  相似文献   

6.
A novel method for indirect determination of ampicillin sodium by the extraction-flotation is proposed in this paper. It is indicated that the degradation of ampicillin sodium took place in the presence of 0.30 M sodium hydroxide in boiling water for 20 min. At pH 4.0, in the presence of ammonium thiocyanate, the thiol group of the degradation product of ampicillin sodium could reduce copper(II) to copper(I) due to the formation of the emulsion cuprous thiocyanate precipitation. By determining the residual amount of copper(II) in the solution and calculating the flotation yield of cuprous thiocyanate, the indirect determination of ampicillin sodium can be performed. When the concentration of cooper(II) was 5.0 μg/mL, a good linear relationship was obtained between the flotation yield of cuprous thiocyanate and the amount of ampicillin sodium in the range of 0.40~9.6 μg/mL. The linear equation is E = 4.1469 + 3.7949c with the correlation coefficient r = 0.9992, and the detection limit (3σ/K) of 0.37 μg/mL. Each parameter has been optimized and the reaction mechanism has been studied. The method has been successfully applied to the determination of ampicillin sodium in pharmaceutical, human plasma and urine samples. Analytical results obtained are satisfactory.  相似文献   

7.
The halogen bonding between [Ru(dcbpy)(2)(SCN)(2)] dye and I(2) molecule has been studied. The ruthenium complex forms a stable [Ru(dcbpy)(2)(SCN)(2)]···I(2)·4(CH(3)OH) adduct via S···I interaction between the thiocyanate ligand and the I(2) molecule. The adduct can be seen as a model for one of the key intermediates in the regeneration cycle of the oxidized dye by the I(-)/I(3)(-) electrolyte in dye sensitized solar cells.  相似文献   

8.
Gomis DB  Jimeno SA  Sanz-Medel A 《Talanta》1982,29(9):761-765
A method is described for the direct spectrophotometric determination of micro-amounts of niobium by extraction into a benzene solution of dibenzo-18-crown-6 (L) from 3M hydrochloric acid containing potassium thiocyanate. The molar absorptivity of the extracted complex is 3.85 +/- 0.03 x 10(4) 1.mole(-1).cm(-1) (relative standard deviation 0.8%). Co-ordinatively unsaturated complexes of the type [NbO(SCN)(3)](2)L and NbO(SCN)(3)L are extracted, along with ion-pairs, especially when small amounts of L are used for extraction. The ion-pair complex [NbOCl(2)(SCN)(3)][(LK)(2)] seems to be the main species formed in the organic phase.  相似文献   

9.
Hou L  Li D  Shi WJ  Yin YG  Ng SW 《Inorganic chemistry》2005,44(22):7825-7832
Six mixed-valence Cu(I)Cu(II) compounds containing 4'-(4-pyridyl)-2,2':6',2' '-terpyridine (L1) or 4'-(2-pyridyl)-2,2':6',2' '-terpyridine (L2) were prepared under the hydrothermal and ambient conditions, and their crystal structures were determined by single-crystal X-ray diffraction. Selection of CuCl(2).2H(2)O or Cu(CH(3)COO)(2).H(2)O with the L1 ligand and NH(4)SCN, KI, or KBr under hydrothermal conditions afforded 1-dimensional mixed-valence Cu(I)Cu(II) compounds [Cu(2)(L1)(mu-1,1-SCN)(mu-Cl)Cl](n) (1), [Cu(2)(L1)(mu-I)(2)Cl](n) (2), [Cu(2)(L1)(mu-Br)(2)Br](n) (3), and [Cu(2)(L1)(mu-1,3-SCN)(2)(SCN)](n)(4), respectively. Compound 5, prepared by layering with CuSCN and L1, is a 2-dimensional bilayer structure. In compounds 1-5, the L1 ligand and X (X = Cl, Br, I, SCN) linked between monovalent and divalent copper atoms resulting in the formation of mixed-valence rectangular grid-type M(4)L(4) or M(6)L(6) building blocks, which were further linked by X (X = Cl, Br, I, SCN) to form 1- or 2-dimensional polymers. The sizes of M(4)L(4) units in 1-4 were fine-tuned by the sizes of X linkers. Reaction of Cu(CH(3)COO)(2).H(2)O with L2 and NH(4)SCN under hydrothermal conditions gave mixed-valence Cu(I)Cu(II) compound [Cu(2)(L2)(mu-1,3-SCN)(3)](n) (6). Unlike those in 1-5, the structure of 6 was constructed from thiocyanate groups and the pendant pyridine of L2 left uncoordinated. The temperature-dependent magnetic susceptibility studies on compounds 1 and 4 showed the presence of mixed-valence electronic structure.  相似文献   

10.
Kinetics for reactions between thiocyanate and trans-Au(CN)(2)Cl(2)(-), trans-Au(CN)(2)Br(2)(-), and trans-Au(NH(3))(2)Cl(2)(+) in an acidic, 1.00 M perchlorate aqueous medium have been studied by use of conventional and diode-array UV/vis spectroscopy and high-pressure and sequential-mixing stopped-flow spectrophotometry. Initial, rapid formation of mixed halide-thiocyanate complexes of gold(III) is followed by slower reduction to Au(CN)(2)(-) and Au(NH(3))(2)(+), respectively. This is an intermolecular process, involving attack on the complex by outer-sphere thiocyanate. Second-order rate constants at 25.0 degrees C for reduction of trans-Au(CN)(2)XSCN(-) are (6.9 +/- 1.1) x 10(4) M(-)(1) s(-)(1) for X = Cl and (3.1 +/- 0.7) x 10(3) M(-)(1) s(-)(1) for X = Br. For reduction of trans-Au(CN)(2)(SCN)(2)(-) the second-order rate constant at 25.0 degrees C is (3.1 +/- 0.1) x 10(2) M(-)(1) s(-)(1) and the activation parameters are DeltaH() = (55 +/- 3) x 10(2) kJ mol(-)(1), DeltaS() = (-17.8 +/- 0.8) J K(-)(1) mol(-)(1), and DeltaV() = (-4.6 +/- 0.5) cm(3) mol(-)(1). The activation volume for substitution of one chloride on trans-Au(NH(3))(2)Cl(2)(+) is (-4.5 +/- 0.5) cm(3) mol(-)(1), and that for reduction of trans-Au(NH(3))(2)(SCN)(2)(+) (4.6 +/- 0.9) cm(3) mol(-)(1). The presence of pi-back-bonding cyanide ligands stabilizes the transition states for both substitution and reductive elimination reactions compared to ammine. In particular, complexes trans-Au(CN)(2)XSCN(-) with an unsymmetric electron distribution along the X-Au-SCN axis are reduced rapidly. The observed entropies and volumes of activation reflect large differences in the transition states for the reductive elimination and substitution processes, respectively, the former being more loosely bound, more sensitive to solvational changes, and probably not involving any large changes in the inner coordination sphere. A transition state with an S-S interaction between attacking and coordinated thiocyanate is suggested for the reduction. The stability constants for formation of the very short-lived complex trans-Au(CN)(2)(SCN)(2)(-) from trans-Au(CN)(2)X(SCN)(-) (X = Cl, Br) by replacement of halide by thiocyanate prior to reduction can be calculated from the redox kinetics data to be K(Cl,2) = (3.8 +/- 0.8) x 10(4) and K(Br,2) = (1.1 +/- 0.4) x 10(2).  相似文献   

11.
Preparation, characterization, and applications of a 1,10-phenanthrolinium cation (phenH(+))-sensitive potentiometric sensor are described. The sensor incorporates a liquid polymeric membrane consisting of phenH-tetraphenylborate, nitrophenyloctyl ether, and poly(vinyl chloride) as ion exchanger, plasticizer, and polymeric support, respectively. The sensor exhibits a fast and Nernstian response to phenH(+) over the concentration range of 6 x 10(-6)-2 x 10(-4) M with a monovalent cationic slope of 58.0+/-0.5 mV/log[phenH(+)] in acetate buffer of pH 4.2. The sensor is successfully applied to the monitoring of the potentiometric titration of Hg(II) and Cu(II) ions with phen solution in the presence of citrate and acetate buffers of pH 4.2, respectively. Sharp inflection breaks (90-180 mV) at 1:1 (metal:phen reaction) are obtained in the presence of chloride and thiocyanate background. This stoichiometry is explained by the formation of insoluble [HgCl(2)(phen)], [Hg(SCN)(2)(phen)], and [Cu(SCN)(2)(phen)] complexes. Optimization of each titration and the effect of foreign ions are evaluated. The method offers the advantages of adequate sensitivity, accuracy, and selectivity for the determination of mercury and copper in pharmaceutical, rock, and tea samples. The results are in good agreement with those obtained using the standard atomic absorption spectrometric and United States Pharmacopeial methods.  相似文献   

12.
Zhang W  Wu X  Wu B  Yu S  Santoni G  Rehder D 《Inorganic chemistry》2003,42(4):1130-1134
The dimeric W(V) complex [Et(4)N](4)[syn-(O=W(NCS)(3))(2)(mu-S)(2)], 1, prepared from [Et(4)N](2)[WS(4)], SCN(-), and Cd(2+), shows interesting reactivity patterns in that the thiocyanate trans to the oxo group can in part be replaced, initiated by Mn(2+), by dimethylformamide (DMF) to form [Et(4)N](2.5)[(O=W(NCS)(2.25)(DMF)(1.25))(2)(mu-S)(2)], 2. With Ag(+), 1 undergoes partial replacement of SCN(-) by DMF and coordinates to the silver ions to generate ([Et(4)N](2.5)[(W(2)O(2)(NCS)(2)(mu-S)(2))(mu-NCS)(2)(DMF)(Ag(0.5)(SCN))])(n), 3. Compound 3 constitutes a polymeric double-stranded chain, with normal bonding interactions [via W-(mu-NCS)-Ag] between the two strands, and moderate intrastrand [W-(mu-NCS).Ag] bonding. The crystal and molecular structures of the three compounds are described.  相似文献   

13.
Pyrolysis of prominent precursor compounds for the synthesis of carbon nitride type materials (e.g., melamine, thiourea) have been studied in detail. Molecular adducts containing monoprotonated melamium C(6)N(11)H(10)(+) and melaminium HC(3)N(3)(NH(2))(3)(+) ions, respectively, have been identified as intermediates. The adduct C(6)N(11)H(10)Cl·0.5NH(4)Cl was obtained by the reaction of melamine C(3)N(3)(NH(2))(3) with NH(4)Cl at 450 °C. During the pyrolysis of thiourea, guanidinium thiocyanate was initially formed and subsequently the melamium thiocyanate melamine adduct C(6)N(11)H(10)SCN·2C(3)N(3)(NH(2))(3) was isolated at 300 °C. A second melaminium thiocyanate melamine adduct with the formula HC(3)N(3)(NH(2))(3)SCN·2C(3)N(3)(NH(2))(3) represents an intermediary reaction product that is best accessible at low pressures. The crystal structures of the compounds were solved by single-crystal XRD. Unequivocal proton localization at the C(6)N(11)H(10)(+) ion was established. A typical intramolecular and interannular hydrogen bridge and other characteristic hydrogen-bonding motifs were identified. Additionally, the adducts were investigated by solid-state NMR spectroscopy. Our study provides detailed insight into the thermal condensation of thiourea by identifying and characterizing key intermediates involved in the condensation process leading to carbon nitride type materials. Furthermore, factors promoting the formation of melamium adduct phases over melem are discussed.  相似文献   

14.
It has been found that in the presence of excess thiocyanate ions, cupric copper will oxidise ferrous ions. Use has been made of this reaction to determine copper by titration of the ferric iron produced, with mercurous nitrate. Although this reaction is the reverse of that usually observed, where the cuprous ion reduces the ferric iron, it has been found that the large excess of thiocyanate is responsible for this effect.  相似文献   

15.
Extraction of Tm(III), from thiocyanate media, by different sulfoxides (R2SO) has revealed that the extractable complex is Tm(SCN)3·4 R2SO. When mixtures of DPSO and HTTA are used for the extraction of Tm(III) from thiocyanate or perchlorate media, synergistic enhancement of the extraction of Tm(III) results. The complexes responsible for the enhanced extraction are Tm(TTA)3·DPSO and Tm(TTA)3·2 DPSO when perchlorate media were employed for the extraction and Tm(SCN)(TTA)2·2 DPSO and Tm(SCN)2(TTA)·3 DPSO, in addition to the above two when a thiocyanate medium was employed for the extraction. Values of equilibrium constants for some equilibria encountered in the extraction of Am(III) and Tm(III) by mixtures of DPSO and HTTA are given.  相似文献   

16.
Four copper complexes of a tridentate Schiff base ligand, 2-pyridyl-N-(2'-methylthiophenyl) methyleneimine, L(1) have been synthesized. All theses species, namely, [L(1)Cu(2)(SCN)(3)](n) (1), [Cu(SCN)(CH(3)CN)](n) (3), [(L(1))Cu(N(3))(Cl)] (4) and [(L(1))Cu(N(3))(SCN)] (5) have been structurally characterized. Complex 1 in acetonitrile promotes cycloaddition of a Cu(II) bound SCN(-) ion to L(1) that exclusively and stoichiometrically forms a mesoionic imidazo[1,5-a]pyridine, namely, 3-(imino-N'-2-methylthiophenyl)imidazo[1,5-a]pyridinium-1-thiolate (2) and a thiocyanato bridged Cu(i) complex, [Cu(SCN)(CH(3)CN)](n) (3). The X-ray crystal structure of 1 confirms the presence of square-pyramidal Cu(II) and tetrahedral Cu(I) ions in N(3)S(2) and N(2)S(2) coordination environments, respectively, bridged to each other via thiocyanate anion. The Cu(II) ions are bonded to a tridentate ligand L(1) and two SCN(-) ions occupy the remaining equatorial and an axial coordination site to adopt a square-pyramidal coordination geometry. To investigate which SCN(-) ion, axially or equatorially bound to Cu(II) center, underwent cycloaddition to L(1) to form 2, two mononuclear Cu(II) complexes 4 and 5 have been synthesized and their reactivity towards externally added KSCN was studied. The molecular structures of 4 and 5 feature a meridionally bound L(1) and an azide ion (N(3)(-)) in the square plane, while a Cl(-) or SCN(-) ion are occupying the axial site, respectively, to fulfill square-pyramidal coordination geometry. Complex 4 reacts with SCN(-) ion to form 5. That an MeCN solution of 5 itself, or of 5 in the presence of KSCN, does not produce 2, supports that possibly the Cu(II) bound equatorial SCN(-) ion is responsible for cycloaddition to L(1). Dark purple solid 2 has also been prepared (turnover number ~4 or 41% yield) efficiently following an alternative and easier one-pot synthesis procedure, that is from a mixture of KSCN and L(1) in the presence of a catalytic amount of anhydrous CuCl(2) (10 mol%) in MeCN in air. The X-ray crystal structure, (1)H NMR spectrum and solution conductivity measurements strongly support that 2 is mesoionic. An MeCN solution of 2 fluoresces at room temperature upon excitation at 240 nm with an emission maximum λ(em) at 470 nm, associated with a quantum yield of 0.16 with respect to a standard Rhodamine-6G fluorophore.  相似文献   

17.
A method for the determination of copper by cuprous thiocyanate is described. This is effected by reacting with ferric sulphate: 3CuCNS +2Fe(S04)3→Fe(CNS)3 + 3FeSO4 + 3CuSO4The determination of Fe′ with dichromate in presence of thiocyanate by means of mercuric sulphate or nitrate was first investigated, and when this had been established, the Fe′ produced according to the above reaction (and which is stoichiometrically equivalent to the amount of copper present), was determined. Very satisfactory results were obtained.  相似文献   

18.
A mononuclear lead thiocyanate adduet Pb(phen)(SCN)2 (phen = 1,10phenanthroline) has been characterized by X-ray diffractometer, IR, UVVis spectra and susceptibility measurement. Structure analysis showed that the lead atom presents a unusual four-coordination geometry with a large vacancy, possibly indicating the stereochemical activity of 6s^2 lone pair electrons.  相似文献   

19.
Mixed-Ligand complexes of Iron(III) with Pyrocatechol-3,5- disulfonie Acid (Tiron) and Thiocyanate in Aqueous Solution In the system iron(III), tiron, thiocyanate two ternary complexes could be detected in acid solution. By spectrophotometric measurements we found the species [Fe(Tiron)(SCN)(H2O)3]2? and [Fe(Tiron)2(SCN)(H2O)]6?. The formation and the optical properties (λmax,? max) are discussed.  相似文献   

20.
Four new supramolecular compounds of Cu(II)-Ni(II) have been synthesized and characterized: [Cu(Me(2)oxpn)Ni(mu-NCS)(H(2)O)(tmen)](2)(ClO(4))(2) (1), [Cu(Me(2)oxpn)Ni(mu-NCS)(H(2)O)(tmen)](2)(PF(6))(2) (2), [Cu(oxpn)Ni(mu-NCS)(NCS) (tmen)](n) (3), and [Cu(Me(2)oxpn)Ni(mu-NCS)(NCS)(tmen)](n) (4), where oxpn = N,N'-bis(3-aminopropyl)oxamidate, Me(2)oxpn = N,N'-bis(3-amino-2,2'-dimethylpropyl)oxamidate, and tmen = N,N,N',N'-tetramethylethylenediamine. Their crystal structures were solved. Complexes 1 and 2 have the same tetranuclear cationic part but a different counteranion. The cationic part consists of two [Cu(Me(2)oxpn)Ni] moieties linked by SCN(-) bridged ligands and intra-tetranuclear hydrogen bonds. In the case of complex 3, a two-dimensional system was built, the thiocyanate ligand linking the dinuclear units gives a chain, and the chains are linked together by hydrogen bonds; intrachain hydrogen bonds are also present. For complex 4, the thiocyanate ligands produce intermolecular linkages between the dinuclear entities, giving a one-dimensional system; intrachain hydrogen bonds are also present. The magnetic properties of the four complexes were studied by susceptibility measurements vs temperature. DFT calculations were made to study the contribution of the SCN(-) and hydrogen bond bridges in the magnetic coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号