首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The second dissociation constant of salicylic acid (H2L) has been determined, at 25 degrees C, in NaCl ionic media by UV spectrophotometric measurements. The investigated ionic strength values were 0.16, 0.25, 0.50, 1.0, 2.0 and 3.0 M. The protolysis constants calculated at the different ionic strengths yielded, with the Specific Interaction Theory, the infinite dilution constant, log beta1(0) = 13.62 +/- 0.03, for the equilibrium L2- + H+ <==> HL-. The interaction coefficient between Na+ and L2-, b(Na+, L2-) = 0.02 +/- 0.07, has been also calculated.  相似文献   

2.
Salvado V  Ribas X  Valiente M 《Talanta》1992,39(1):73-76
Complex formation between Fe(III) and tartaric acid (H(2)L) has been studied in O.5M NaNO(3) medium at 25 degrees by potentiometry at pH 4.5-11. The following complex species and corresponding values of the stability constants (charges omitted) are proposed: 2Fe + 2L + 5H(2)O --> Fe(2)(OH)(5)L(2) + 5H(+); log* beta(-522) = 4.95 Fe + L + 3H(2)O --> Fe(OH)(3)L + 3H(+); log* beta(-311) = -1.55 Fe + L + 5H(2)O --> Fe(OH)(5)L + 5H(+); log* beta(-511) = -21.2 These results are in good agreement with those reported for this system in acid. The results may be presented as the degeneration of the "core + link" mechanism observed in the acidic zone. Structures are suggested for the complex species formed.  相似文献   

3.
The kinetics and mechanism of siderophore ligand dissociation from their fully chelated Fe(III) complexes is described for the highly preorganized cyclic tetradentate alcaligin and random linear tetradentate rhodotorulic acid in aqueous solution at 25 degrees C (Fe2L3 + 6H+ reversible 2 Fe3+ aq + 3 H2L). At siderophore:Fe(III) ratios where Fe(III) is hexacoordinated, kinetic data for the H(+)-driven ligand dissociation from the Fe2L3 species is consistent with a singly ligand bridged structure for both the alcaligin and rhodotorulic acid complexes. Proton-driven ligand dissociation is found to proceed via parallel reaction paths for rhodotorulic acid, in contrast with the single path previously observed for the linear trihydroxamate siderophore ferrioxamine B. Parallel paths are also available for ligand dissociation from Fe2(alcaligin)3, although the efficiency of one path is greatly diminished and dissociation of the bis coordinated complex Fe(alcaligin)(OH2)2+ is extremely slow (k = 10(-5) M-1 s-1) due to the high degree of preorganization in the alcaligin siderophore. Mechanistic interpretations were further confirmed by investigating the kinetics of ligand dissociation from the ternary complexes Fe(alcaligin)(L) in aqueous acid where L = N-methylacetohydroxamic acid and glycine hydroxamic acid. The existence of multiple ligand dissociation paths is discussed in the context of siderophore mediated microbial iron transport.  相似文献   

4.
Complexation of UVI with 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in acidic to basic solutions has been studied with multiple techniques. A number of 1:1 (UO2H3L), 1:2 (UO2HjL2 where j = +4, +3, +2, +1, 0, and -1), and 2:2 [(UO2)2HjL2 where j = +1, 0, and -1] complexes form, but the 1:2 complexes are the major species in a wide pH range. Thermodynamic parameters (formation constants and enthalpy and entropy of complexation) were determined by potentiometry and calorimetry. Data indicate that the complexation of UVI with HEDPA is exothermic, favored by the enthalpy of complexation. This is in contrast to the complexation of UVI with dicarboxylic acids in which the enthalpy term usually is unfavorable. Results from electrospray ionization mass spectrometry and 31P NMR have confirmed the presence of 1:1, 1:2, and 2:2 UVIHEDPA complexes.  相似文献   

5.
Kaolinite is a dominant clay mineral in the soils in tropical and subtropical regions, and its dissolution has an influence on a variety of soil properties. In this work, kaolinite dissolution induced by three kinds of low-molecular-weight organic acid, i.e., citric, oxalic, and malic acids, was evaluated under far-from-equilibrium conditions. The rates of kaolinite dissolution depended on the kind and concentration of organic acids, with the sequence R(oxalate)>R(citrate)>R(malate). Chemical calculation showed the change in concentration of organic ligand relative to change in concentration of organic acid in suspensions of kaolinite and organic acid. The effect of organic acid on kaolinite dissolution was modeled by species of organic anionic ligand. For oxalic acid, L(2-)(oxalic) and HL(-)(oxalic) jointly enhanced the dissolution of kaolinite, but for malic and citric acids, HL(-)(malic) and H2L-(citric) made a higher contribution to the total dissolution rate of kaolinite than L(2-)(malic) and L(3-)(citric), respectively. For oxalic acid, the proposed model was R(Si)=1.89x10(-12)x[(25x)/(1+25x)]+1.93x10(-12)x[(1990x1)/(1+1990x1)] (R2=0.9763), where x and x1 denote the concentrations of HL(oxalic) and L(oxalic), respectively, and x1=10(-3.81)xx/[H+]. For malic acid, the model was R(Si)=4.79x10(-12)x[(328x)/(1+328x)]+1.67x10(-13)x[(1149x1)/(1+1149x1)] (R2=0.9452), where x and x1 denote the concentrations of HL(malic) and L(malic), respectively, and x1=10(-5.11)xx/[H+], and for citric acid, the model was R(Si)=4.73x10(-12)x[(845x)/(1+845x)]+4.68x10(-12)x[(2855x1)/(1+2855x1)] (R2=0.9682), where x and x1 denote the concentrations of H2L(citric) and L(citric), respectively, and [Formula: see text] .  相似文献   

6.
The adsorption of mellitic acid (benzene-1,2,3,4,5,6-hexacarboxylic acid) onto goethite was investigated at five temperatures between 10 and 70 degrees C. Mellitic acid adsorption increased with increasing temperature below pH 7.5, but at higher pH the effect of increasing temperature was to reduce the amount adsorbed. Potentiometric titrations were conducted and adsorption isotherms were measured over the same temperature range, and the data obtained were used in conjunction with adsorption edge data to develop an Extended Constant Capacitance Surface Complexation Model of mellitic acid adsorption. A single set of reactions was used to model the adsorption for the three different experiment types at the five temperatures studied. The adsorption reactions proposed for mellitate ion (L(6-)) adsorption at the goethite surface (SOH) involved the formation of two outer-sphere complexes: SOH + L(6-) + 3H+ <==> [(SOH2)+ (LH2)(4-)]3-, 2SOH + L(6-) + 2H+ <==> [(SOH2)2(2+) (L)(6-)]4-. This mechanism is consistent with recent ATR-FTIR spectroscopic measurements of the mellitate-goethite system. Thermodynamic parameters calculated from the temperature dependence of the equilibrium constants for these reactions indicate that the adsorption of mellitic acid onto goethite is accompanied by a large entropy increase.  相似文献   

7.
The dimethyl-, di-n-butyl-, and diphenyltin(IV) dithiocarbamate (dtc) complexes [{R2Sn(L-dtc)}x] 1-7 (1, L = L1, R = Me; 2, L = L1, R = n-Bu; 3, L = L2, R = Me, x = infinity; 4, L = L2, R = n-Bu; 5, L = L3, R = Me, x = 2; 6, L = L3, R = n-Bu, x = 2; 7, L = L3, R = Ph, x = 2) have been prepared from a series of secondary amino acid (AA) homologues as starting materials: N-benzylglycine (alpha-AA derivative = L1), N-benzyl-3-aminopropionic acid (beta-AA derivative = L2), and N-benzyl-4-aminobutyric acid (gamma-AA derivative = L3). The resulting compounds have been characterized by elemental analysis, mass spectrometry, IR and NMR ((1)H, (13)C, and (119)Sn) spectroscopy, thermogravimetric analysis, and X-ray crystallography, showing that in all complexes both functional groups of the heteroleptic ligands are coordinated to the tin atoms. By X-ray diffraction analysis, it could be shown that [{Me2Sn(L2-dtc)}x] (3) is polymeric in the solid state, while the complexes derived from L3 (5-7) have dinuclear 18-membered macrocyclic structures of the composition [{R2Sn(L3-dtc)}2]. For the remaining compounds, it could not be established with certainty whether the structures are macrocyclic or polymeric. A theoretical investigation at the B3LYP/SBKJC(d,p) level of theory indicated that the alpha-AA-dtc complexes might have trinuclear macrocyclic structures. The macrocyclic complexes 5-7 have a double-calix-shaped conformation with two cavities large enough for the inclusion of aliphatic and aromatic guest molecules. They are self-complementary for the formation of supramolecuar synthons that give rise to 1D molecular arrangements in the solid state. Preliminary recognition experiments with tetrabutylammonium acetate have shown that the [{R2Sn(L3-dtc)}2] macrocycles 6 and 7 might interact simultaneously with anions (AcO(-)), which coordinate to the tin atoms, and organic cations (TBA(+)), which accommodate within the hydrophobic cavity (ion-pair recognition).  相似文献   

8.
The formation of the S-nitrosocysteine (CySNO) in aqueous solution starting from cysteine (CySH) and sodium nitrite is shown to strongly depend on the pH. Experiments conducted within the pH range 0.5-7.0 show that at pH below 3.5 the NO+ (or H2NO 2 +) is the main nitrosating species, while at higher pH (>3.5) the nitrosating species is most likely the N2O3. A kinetic study provided a general kinetic equation, V(CySNO) = k1[HNO2][CySH]eq [H+] + k2[HNO2]2. The first term of this equation is predominant at pH lower than 3.5, in agreement with the literature for the direct nitrosation of thiols with nitrous acid; the value for the third-order rate constant, k(1) = 7.9 x 10(2) L(2) mol(-2) min(-1), was calculated. For experiments at pH higher than 3.5, the second term becomes prevalent and the second-order rate constant k(2) = (3.3 +/- 0.1) x 10(3) L mol(-1) min(-1) was calculated. A competitive oxidation process leading to the direct formation of cystine (CySSCy) has been also found. Most likely also for this process two different mechanisms are involved, depending on the pH, and a general kinetic equation, V(CySSCy) = k3[CySH](eq)[HNO2][H+] + k3'[CySH]eq[HNO2], is proposed.  相似文献   

9.
The oxidation of hydrogen bromide and alkali metal bromide salts to bromine in acetic acid by cobalt(III) acetate has been studied. The oxidation is inhibited by Mn(OAc)(2) and Co(OAc)(2), which lower the bromide concentration through complexation. Stability constants for Co(II)Br(n)() were redetermined in acetic acid containing 0.1% water as a function of temperature. This amount of water lowers the stability constant values as compared to glacial acetic acid. Mn(II)Br(n)() complexes were identified by UV-visible spectroscopy, and the stability constants for Mn(II)Br(n)() were determined by electrochemical methods. The kinetics of HBr oxidation shows that there is a new pathway in the presence of M(II)Br(n)(). Analysis of the concentration dependences shows that CoBr(2) and MnBr(2) are the principal and perhaps sole forms of the divalent metals that react with Co(III) and Mn(III). The interpretation of these data is in terms of this step (M, N = Mn or Co): M(OAc)(3) + N(II)Br(2) + HOAc --> M(OAc)(2) + N(III)Br(2)OAc. The second-order rate constants (L mol(-)(1) s(-)(1)) for different M, N pairs in glacial acetic acid are 4.8 (Co, Co at 40 degrees C), 0.96 (Mn, Co at 20 degrees C), 0.15 (Mn(III).Co(II), Co at 20 degrees C), and 0.07 (Mn, Mn at 20 degrees C). Following that, reductive elimination of the dibromide radical is proposed to occur: N(III)Br(2)OAc + HOAc --> N(OAc)(2) + HBr(2)(*). This finding implicates the dibromide radical as a key intermediate in this chemistry, and indeed in the cobalt-bromide catalyzed autoxidation of methylarenes, for which some form of zerovalent bromine has been identified. The selectivity for CoBr(2) and MnBr(2) is consistent with a pathway that forms this radical rather than bromine atoms which are at a considerably higher Gibbs energy. Mn(OAc)(3) oxidizes PhCH(2)Br, k = 1.3 L mol(-)(1) s(-)(1) at 50.0 degrees C in HOAc.  相似文献   

10.
石海宁  王辉  陶丽芝  王宗花  丁明玉 《色谱》2010,28(6):628-631
通过乳酸催化脱水制备丙烯酸具有良好的应用前景。为了对其中的催化过程进行有效、及时的监控,建立了一种同时测定乳酸及丙烯酸的阴离子交换色谱法(AEC)。选择Metrohm A Supp 5阴离子交换柱(150 mm×4.0 mm),以2 mmol/L Na2CO3+2 mmol/L NaHCO3混合水溶液为流动相,采用化学抑制电导检测技术,乳酸和丙烯酸在6 min内即可实现完全分离。乳酸和丙烯酸工作曲线的线性范围分别为0.1~500 mg/L和0.1~200 mg/L,检出限分别为0.030 mg/L和0.035 mg/L,加标回收率分别为100.7%~106%和99.6%~103%,相对标准偏差分别为2.16%~2.49%和2.42%~2.48%。该方法准确、快速、灵敏、重现性好。  相似文献   

11.
Three different direct HPLC methods for the determination of 3-methoxy-4-hydroxymandelic acid (VMA, vanillylmandelic acid), 5-hydroxyindoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylacetic acid (HVA, homovanillic acid) in urine were compared: two spectrofluorometric methods, applying discontinuous gradients, and one serial coulometric linear gradient method. The imprecision study (n = 6) revealed comparable coefficients of variation (CV), intra-assay ranging 1.4-11.1%, and inter-assay ranging 5.9-11.8% for physiological and moderately elevated levels of VMA, 5-HIAA and HVA. All methods showed good linearities up to 100 mumol/L for each of the three compounds studied. Analytical recoveries were 97-114% for VMA, 87-103% for 5-HIAA, and 80-95% for HVA. Recoveries were not dependent on urinary relative densities in the range 1.010-1.030 kg/L or on protein content (prior to acidification) in the range 0.1-3 g/L, or on the pH of conservation in the range 2-5 or on storage temperature in the range -20 - +22 degrees C for three weeks. The distributed-sample comparison revealed acceptable correlations and clinically unimportant accuracy differences between the methods. It is concluded that direct fluorometric and electrochemical HPLC methods can be used in the determination of major catecholamine and serotonin metabolites in human urine for clinical diagnosis and follow-up of neural crest and carcinoid tumours.  相似文献   

12.
This work reports a potentiometric, calorimetric and spectropolarimetric ultraviolet circular dichroism (UV/CD) study of the interaction of l-malic acid with alkaline metals or (poly)ammonium (methylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, spermine, tetraethylenepentamine and pentaethylenehexamine) cations. Stability data (logK, DeltaG(0)) were obtained potentiometrically for the l-malic acid with (poly)ammonium cations systems; calorimetric measurements (25 degrees C) made it possible to obtain DeltaH(0) and TDeltaS(0) values for the complexes formed in the systems under examination. logK values calculated (for the reaction: H(i)A(i+)+H(j)L((j-z))=ALH(r)((i+j-z)), with r=i+j) range between 0.8 and 4.6, i.e., the interactions are from weak to fairly strong while maximum stability for each system is given by the species with the highest z(anion)xz(cation) (z=charge) value. Enthalpy changes associated with reactions H(n)A(n+)+L(2-)=ALH(n)((n-2)) and H(n)A(n+)+HL(-)=ALH(n+1)((n-1)) are always positive and increase progressively with n. The same is valid for T DeltaS(0) values, which indicate that these species are entropically stabilized, as expected for electrostatic interactions. It was verified that the UV/CD signal depends on both ionic medium and ionic strength value; for comparison, we used the l-malic acid signal recorded in tetramethylammonium chloride as baseline background salt (as in potentiometry). UV/CD spectra were recorded for solutions containing both cationic and anionic species. When the cation was a protonated polyamine, CD spectra calculations were performed for most stable ion pairs: the results show remarkable differences in Deltaepsilon (dm(3) mol(-1) cm(-1)) values at 205 nm (which is the l-malate UV/CD lambda(max)) between the chiral ligand and its complex with a polyamine.  相似文献   

13.
Linear synthetic dihydroxamic acids ([CH3N(OH)C=O)]2(CH2)n; H2Ln) with short (n = 2) and long (n = 8) hydrocarbon-connecting chains form mono- and dinuclear complexes with Fe(III) in aqueous solution. At conditions where the formation of Fe2(Ln)3 is favored, complexes with each of the two ligand systems undergo [H+]-induced ligand dissociation processes via multiple sequential and parallel paths, some of which are common and some of which are different for the two ligands. The pH jump induced ligand dissociation proceeds in two major stages (I and II) where each stage is shown to be comprised of multiple components (Ix, where x = 1-3 for L2 and L8, and IIy, where y = 1-3 for L2 and y = 1-4 for L8). A reaction scheme consistent with kinetic and independent ESI-MS data is proposed that includes the tris-chelated complexes (coordinated H2O omitted for clarity) (Fe2(Ln)3, Fe2(L2)2(L2H)2, Fe(LnH)3, Fe(L8)(L8H)), bis-chelated complexes (Fe2(Ln)2(2+), Fe(LnH)2+, Fe(L8)+), and monochelated complexes (Fe(LnH)2+). Analysis of kinetic data for ligand dissociation from Fe2(Ln)(LnH)3+ (n = 2, 4, 6, 8) allows us to estimate the dielectric constant at the reactive dinuclear Fe(III) site. The existence of multiple ligand dissociation paths for the dihydroxamic acid complexes of Fe(III) is a feature that distinguishes these systems from their bidentate monohydroxamic acid and hexadentate trihydroxamic acid counterparts and may be a reason for the biosynthesis of dihydroxamic acid siderophores, despite higher environmental molar concentrations necessary to completely chelate Fe(III).  相似文献   

14.
The initial rate of the bromate-bromide reaction, BrO3- + 5Br- + 6H+ --> 3Br2 + 3H2O, has been measured at constant ionic strength, I = 3.0 mol L(-1), and at several initial concentrations of acetate, bromate, bromide, and perchloric acid. The reaction was followed at the Br2/Br3- isosbestic point (lambda = 446 nm) by the stopped-flow technique. A very complex behavior was found such that the results could be fitted only by a six term rate law, nu = k1[BrO3-][Br-][H+]2 + k2[BrO3-][Br-]2[H+]2 + k3[BrO3-][H+]2[acetate]2 + k4[BrO3-][Br-]2[H+]2[acetate] + k5[BrO3-][Br-][H+]3[acetate]2 + k6[BrO3-][Br-][H+]2[acetate], where k1 = 4.12 L3 mol(-3) s(-1), k2 = 0.810 L4 mol(-4) s(-1), k3 = 2.80 x 10(3) L4 mol(-4) s(-1), k4 = 278 L5 mol(-5) s(-1), k5 = 5.45 x 10(7) L6 mol(-6) s(-1), and k6 = 850 L4 mol(-4) s(-1). A mechanism, based on elementary steps, is proposed to explain each term of the rate law. This mechanism considers that when acetate binds to bromate it facilitates its second protonation.  相似文献   

15.
A new method has been established for the determination of aminomethylbenzoic acid using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent. This method is based on the formation of a pink compound from the reaction of aminomethylbenzoic acid and sodium 1,2-naphthoquinone-4-sulfonate. The nucleophilic substitution reaction proceeds quantitatively in pH 12.0 buffer solution. The stoichiometric ratio of the reaction, maximum absorption wavelength and the value of epsilon(430) were 1:1, 430 nm, and 2.87 x 10(3)L mol(-1)cm(-1), respectively. Beer's law was obeyed in the range of 0.80-80 mg/L of aminomethylbenzoic acid. The data have been filled to a linear regression equation A=0.03183+0.01658C (mg/L), with a correlation coefficient of 0.9996. The detection limit is 0.11 mg/L, R.S.D. is 0.54%, and average recovery is over 99.6%. This paper further improves the determination of aminomethylbenzoic acid compared to the previous methods. The kinetic property and reaction mechanism have also been discussed. This proposed method has been successfully applied to the determination of aminomethylbenzoic acid in injection of aminomethylbenzoic acid with satisfactory results.  相似文献   

16.
提出一种以亚甲基二膦酸(MDPA, H4L)为主配位剂的无氰镀铜体系. 采用pH 电位滴定法分别测定MDPA的四级解离常数和MDPA-Cu(II)的稳定常数, 并比较MDPA-Cu(II)和羟基乙叉二膦酸(HEDPA)-Cu(II)的循环伏安曲线和阴极极化曲线. 结果表明: MDPA各级解离常数为, pK1=1.86, pK2=2.65, pK3=6.81, pK4=9.04;MDPA与Cu2+形成分级配合物的稳定常数为, pKML=10.65, pKML2 = 5.59, pKML3 = 2.50; 随着pH升高, 形成的配合物依次为, Cu(H3L)2、[Cu(H3L)(H2L)]-和[Cu(H2L)2]2-; 当pH在7-10 时, MDPA较HEDPA更易与Cu2+配位. 当pH=9 时, MDPA碱性镀铜体系阴极主要发生的是[Cu(H3L)(H2L)]-和[Cu(H2L)2]2-还原生成铜的过程; 在10 °C,MDPA体系的铜配位化合物还原生成铜的电位比HEDPA体系负移, 扩散速度更快.  相似文献   

17.
Five new Zn(II)/Cd(II) coordination polymers constructed from di(1H-imidazol-1-yl)methane (L) mixed with different auxiliary carboxylic acid ligands formulated as [Zn(L)(H(2)L(1))(2)·(H(2)O)(0.2)](n) (1), {[Zn(L)(L(2))]·H(2)O}(n) (2), {[Cd(2)(L)(2)(L(2))(2)]·2H(2)O}(n) (3), {[Cd(L)(L(3))]·H(2)O}(n) (4) and [Cd(L)(L(4))](n) (5) (H(3)L(1) = 1,3,5-benzenetricarboxylic acid, H(2)L(2) = 4,4'-oxybis(benzoic acid), H(2)L(3) = m-phthalic acid and H(2)L(4) = p-phthalic acid) have been synthesized under hydrothermal conditions and structurally characterized. Four related auxiliary carboxylic acids were chosen to examine the influences on the construction of these coordination frameworks with distinct dimensionality and connectivity. The coordination arrays of 1-5 vary from 1D zigzag chain for 1, 2D (4,4) layer for 2-4, to 2-fold interpenetrated 3D coordination network with the α-Po topology for 5. The thermal and photoluminescence properties of complexes 1-5 in the solid state have also been investigated.  相似文献   

18.
Liu QD  Gao S  Li JR  Zhou QZ  Yu KB  Ma BQ  Zhang SW  Zhang XX  Jin TZ 《Inorganic chemistry》2000,39(12):2488-2492
The new heteronuclear iminodiacetic acid (H2L) complexes [LnCu6(mu 3-OH)3(HL)2(L)4](ClO4)(2).25H2O with Ln = La (1) and Tb (2) have been prepared in aqueous solution and characterized by single-crystal X-ray diffraction to be isomorphous (crystallographic data for 1 and 2: hexagonal, P63/m; a = b = 12.6425(14) A, c = 24.541(5) A, Z = 2 (1); a = b = 12.5802(9) A, c = 24.285(4) A, Z = 2 (2)). Ln3+ was found to be located in the center of the trigonal prismatic cage formed by six Cu2+ ions, with a tricapped trigonal prismatic coordination environment of nine O atoms. The magnetic properties of complexes 1 and 2 have been studied. The results indicate the presence of ferromagnetic couplings between Tb3+ and Cu2+ in compound 2.  相似文献   

19.
The title reaction takes place according to the stoichiometry 2L(2)RhOO(2+) + 3HNO(2) + H(2)O --> 2L(2)Rh(OH(2))(3+) + 3NO(3)(-) + H(+) (L(2) = meso-Me(6)-[14]ane-N(4)). The kinetics are second order in HNO(2) and independent of the concentration of L(2)RhOO(2+), rate = (k(1) + k(2)[H(+)])[HNO(2)](2), where k(1) = 10.9 M(-1) s(-1) and k(2) = 175 M(-2) s(-1) at 25 degrees C and 0.10 M ionic strength. The reaction produces two observable intermediates, the nitrato (L(2)RhONO(2)(2+)) and hydroperoxo (L(2)RhOOH(2+)) complexes. The product analysis and kinetics are indicative of the initial rate-controlling formation of NO and NO(2), both of which react rapidly with L(2)RhOO(2+) in subsequent steps. The reaction with NO produces mainly L(2)RhONO(2)(2+), which hydrolyzes to L(2)Rh(OH(2))(3+) and NO(3)(-). Another minor pathway generates the hydroperoxo complex, which was detected by its known reaction with Fe(aq)(2+). The reaction of NO(2) with L(2)RhOO(2+) requires an additional equivalent of HNO(2) and produces L(2)Rh(OH(2))(3+) and NO(3)(-) via a proposed peroxynitrato complex L(2)RhOONO(2)(2+). This work provides strong evidence for the long-debated reaction between HNO(2) and H(2)NO(2)(+) to generate N(2)O(3).  相似文献   

20.
Cui Y  Ngo HL  Lin W 《Inorganic chemistry》2002,41(5):1033-1035
A new rigid angular bridging ligand, 7-oxa-dibenzofluorene-3,11-dicarboxylic acid (H(2)L), was synthesized by cyanation of known rac-6,6'-dibromo-1,1'-bi-2-naphthol followed by ring closure and hydrolysis with concentrated sulfuric acid and used for the self-assembly of nanoscopic molecular rectangle [Cu(4)(L)(4)(Py)(8)].2DMF.10H(2)O, 1, and 1-D coordination polymer [Co(2)(L)(2)(Py)(4)].2DMF.2H(2)O, 2. Both 1 and 2 contain open channels occupied by DMF and water guest molecules. Crystal data for 1:[?] triclinic, space group P(-)1, a = 8.869(2) A, b = 16.437(3) A, c = 21.586(4) A, alpha = 78.18(3), beta = 79.19(3), gamma = 83.66(3), U = 3017.0(11) A(3), and Z = 1. Crystal data for 2: triclinic, space group P(-)1, a = 8.254(2) A, b = 12.154(2) A, c = 15.348(3) A, alpha = 95.34(3), beta = 93.38(3), gamma = 94.37(3), U = 1525.1(5) A(3), and Z = 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号