首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The photophysical properties of aqueous solution of styryl dye, 4-[(E)-2-(3,4-dimethoxyphenyl)ethenyl]-1-ethylpyridinium perchlorate (dye 1), in the presence of cucurbit[7]uril (CB[7]) was studied by means of fluorescence spectroscopy methods. The production of 1:1 host-guest complexes in the range of CB[7] concentrations up to 16 μM with K = 1.0 × 10(6) M(-1) has been observed, which corresponds to appearance of the isosbestic point at 396 nm in the absorption spectra and a 5-fold increase in fluorescence intensity. The decay of fluorescence was found to fit to double-exponential functions in all cases; the calculated average fluorescence lifetime increases from 145 to 352 ps upon the addition of CB[7]. Rotational relaxation times of dye 1 solutions 119 ± 14 ps without CB[7] and 277 ± 35 ps in the presence of CB[7] have been determined by anisotropy fluorescence method. The comparison of the results of quantum-chemical calculations and experimental data confirms that in the host cavity dye 1 rotates as a whole with CB[7].  相似文献   

2.
The use of plasmonic nanostructures for fluorescence signal amplification is currently a very active research field. The detection of submonolayers of proteins labeled with organic dyes is a widely used technique in surface-based immunoassays and DNA hybridization. There is a strong interest in the development of new optical and chemical methods to increase the signal from ultralow concentrations of dyes on the surface of sensor substrates. Herein, we have explored the possibility of using vacuum-deposited silver nanostructures on dielectric layers and silver mirrors as potential plasmonic substrates that effectively amplify fluorescence over a broad spectral range. By optimizing deposition parameters for dielectric layers and silver nanostructures and applying thermal annealing processes, we observed large fluorescence amplifications from three different dye-strept(avidin) conjugates: about 7-fold for a UV/blue dye AF350-Av, 49-fold for a blue-green dye AF488-SA, and up to 208-fold for red-emitting AF647-SA dye. The observed amplification factors for the ensemble of fluorophores are very promising for development of surface-based bioassays. These substrates can be prepared using simple vacuum deposition in which we circumvent using the expensive nanofabrication methods. In addition, unlike most nanofabrication methods, the present approach is appropriate for large scale fabrication of substrates with microscope slide surface area suitable for sensing applications.  相似文献   

3.
Photophysical properties of coumarin-481 (C481) dye in aqueous solution show intriguing presence of multiple emitting species. Concentration and wavelength dependent fluorescence decays and time-resolved emission spectra and area-normalized emission spectra suggest the coexistence of dye monomers, dimers, and higher aggregates (mostly trimers) in the solution. Because of the efficient intramolecular charge transfer (ICT) state to twisted intramolecular charge transfer (TICT) state conversion, the dye monomers show very short fluorescence lifetime of ~0.2 ns. Fluorescence lifetimes of dimers (~4.1 ns) and higher aggregates (~1.4 ns) are relatively longer due to steric constrain toward ICT to TICT conversion. Observed results indicate that the emission spectra of the aggregates are substantially blue-shifted compared to monomers, suggesting H-aggregation of the dye in the solution. Temperature-dependent fluorescence decays in water and time-resolved fluorescence results in water-acetonitrile solvent mixtures are also in support of the dye aggregation in the solution. Though dynamic light scattering studies could not recognize the dye aggregates in the solution due to their small size and low concentration, fluorescence up-conversion measurements show a relatively higher decay tail in water than in water-acetonitrile solvent mixture, in agreement with higher dye aggregation in aqueous solution. Time-resolved fluorescence results with structurally related non-TICT dyes, especially those of coumarin-153 dye, are also in accordance with the aggregation behavior of these dyes in aqueous solution. To the best of our knowledge, this is the first report on the aggregation of coumarin dyes in aqueous solution. Present results are important because coumarin dyes are widely used as fluorescent probes in various microheterogeneous systems where water is always a solvent component, and the dye aggregation in these systems, if overlooked, can easily lead to a misinterpretation of the observed results.  相似文献   

4.
Ma G  Cheng Q 《Talanta》2005,67(3):514-519
We report a nanoscale lipid membrane-based sensor of conjugated polydiacetylene (PDA) vesicles for fluorescence detection of organic amines. The vesicle sensor was constructed by incorporation of a BODIPY fluorescent dye into the PDA vesicles. The fluorescent properties of the resulting vesicles can be manipulated by adjusting lipid components, and are controlled by environmental and solution conditions. The fluorescence of the BODIPY dye was significantly quenched in the polymerization of diacetylene lipid vesicles by a UV irradiation process. However, it was sufficiently recovered by external stimuli such as a hike of solution pH. The fluorescence recovery process was reversible, and a decrease in solution pH resulted in repeated quenching. The reported system transforms an external stimulus into a large fluorescence intensity change, demonstrating great potential in developing new signal reporting method for biosensor design. The quench-recovery phenomenon of the BODIPY-PDA is believed to be related to the energy transfer between the dye and the PDA conjugate backbone. The vesicle sensor was applied for detecting an organic amine, triethylamine (TEA) and a large linear relationship was obtained between the increase in fluorescence intensity and the concentrations of TEA. The detection limit of TEA by vesicle sensors using fluorescence recovery was found to be 10 μM.  相似文献   

5.
新型近红外试剂的合成及其现场二聚体与DNA作用的研究   总被引:6,自引:0,他引:6  
合成了一种新型近红外阴离子染料,并对其水溶液及阳离子表面活性剂CTAB存在下的吸收荧光光谱进行了研究。结果表明,低浓度的CTAB与该近红外阴离子染料形成离子缔合物而使阴离子染料的荧光强度降低,当CTAB的浓度进一步加大时,其胶束前预聚集促使该染料形成非荧光二聚体,导致荧光急剧猝灭。  相似文献   

6.
A new merocyanine dye was synthesized, and its acidity constant was determined by spectrophotometric and chemometrics methods. The interactions of the new cyanine dye with bovine serum albumin (BSA) have been studied by fluorescence and UV absorption spectroscopy at pH 7.40. A visual color change from red to blue was observed by addition of BSA to aqueous solution of the dye. The quenching constants and binding parameters (binding constants and number of binding sites) were determined at different temperatures. The calculated thermodynamic parameters confirmed that the binding reaction is mainly entropy-driven, whereas electrostatic interaction plays major role in the reaction. The displacement experiment confirmed binding of the dye to the subdomain IIA (site 1) of albumin. Moreover, synchronous fluorescence spectroscopy studies revealed the dye induces some local conformational change in BSA. The binding distance, r, between donor (serum albumin) and acceptor (dye) was obtained according to Förster’s theory.  相似文献   

7.
阳离子表面活性剂与曙红Y的荧光反应及其分析应用   总被引:17,自引:0,他引:17  
研究阳离子表面活性剂(CSAA)在水溶液中与曙红Y的荧光反应, 发现当CSAA单体与曙红Y形成离子缔合物时, 荧光发生猝灭, 而CSAA胶束与曙红Y作用又会出现一个新的、更强的荧光。荧光猝灭反应具有很高的灵敏度, 对于不同的CSAA, 其检测限在6.6-12.0ng/mL之间, 可用于痕量CSAA的测定。此外, 荧光猝灭和新荧光的产生也为研究表面活性剂和荧光染料在溶液中的存在状态提供了新的途径。还研究了反应体系的荧光特征、适宜条件并讨论了反应机理。  相似文献   

8.
A new method of noncontact temperature measurement in microliter-sized volumes is demonstrated, based on the temperature sensitivity of the fluorescence lifetime of rhodamine-G when it is attached to a DNA oligomer. As temperature changes, the spacing between the fluorescent dye and a designed sequence of DNA bases is modulated by conformation changes of the DNA chain, and as a result the ability of dye molecules to fluoresce is also modulated according to differential quenching by bases on the DNA. In the system that we studied, the temperature sensitivity of the fluorescence lifetime was 36-42 ps/ degrees C depending on specific solution conditions. Although this strategy of temperature measurement is demonstrated using a specific sequence of DNA, it can also be generalized to a dye attached to any other intrinsic quencher of fluorescence whose conformation changes with temperature.  相似文献   

9.
番红花红T与表面活性剂的作用及其在标记DNA中的应用   总被引:16,自引:0,他引:16  
对阳离子染料番红花红T(ST)在阴离子表面活性剂存在时的溶液状态的吸收光谱和荧光光谱进行了研究。结果表明,低浓度阴离子表面活性剂与ST形成缔合物,导致ST的吸收与荧光强度降低;增大表面活性剂的浓度,其分子胶束前预聚集促使染料形成非荧光二聚体,导致荧光急剧猝灭,吸收光谱出现新的特征吸收峰;当表面活性剂浓度大于临界胶束浓度(CMC)时,染料二聚体离解,ST单体增溶于胶团中形成新的高量子产率荧光体。本文  相似文献   

10.
Fluorescent organic dyes are currently the standard signal-generating labels used in microarray quantification. However, new labeling strategies are needed to meet the demand for high sensitivity in the detection of low-abundance proteins and small molecules. In this report, a long-chain DNA/dye conjugate was used to attach multiple fluorescence labels on antibodies to improve signal intensity and immunoassay sensitivity. Compared with the 30 base-pair (bp) oligonucleotide used in our previous work [Q. Zhang, L.-H. Guo, Bioconjugate Chem. 18 (2007) 1668-1672], conjugation of a 219 bp DNA in solution with a fluorescent DNA binder SYBR Green I resulted in more than sixfold increase in signal intensity, consistent with the increase in bp number. In a direct immunoassay for the detection of goat anti-mouse IgG in a mouse IgG-coated 96-well plate, the long DNA conjugate label also produced higher fluorescence than the short one, accompanied by about 15-fold improvement in the detection limit. To demonstrate its advantage in real applications, the DNA/dye conjugate was employed in the competitive immunoassay of 17β-estradiol, a clinically and environmentally important analyte. The biotin-terminated DNA was attached to biotinylated anti-estradiol antibody through the biotin/streptavidin/biotin bridge after the immuno-reaction was completed, followed by conjugation with SYBR Green I. The limit of detection for 17β-estradiol is 1.9 pg mL−1, which is 200-fold lower than the assay using fluorescein-labeled antibodies. The new multiple labeling strategy uses readily available reagents, and is also compatible with current biochip platform. It has great potential in the sensitive detection of protein and antibody microarrays.  相似文献   

11.
A new pH and metal ion-responsive BODIPY-based fluorescent probe with an aza crown ether subunit has been synthesized via condensation of 4-(1,4,7,10-tetraoxa-13-aza-cyclopentadec-13-yl)-benzaldehyde with the appropriate 1,3,5,7-tetramethyl substituted boron dipyrromethene moiety. Steady-state and time-resolved fluorometries have been used to study the spectroscopic and photophysical characteristics of this probe in various solvents. The fluorescence properties of the dye are strongly solvent dependent: increasing the solvent polarity leads to lower fluorescence quantum yields and lifetimes, and the wavelength of maximum fluorescence emission shifts to the red. The Catalan solvent scales are found to be the most suitable for describing the solvatochromic shifts of the fluorescence emission. Fluorescence decay profiles of the dye can be described by a single-exponential fit in nonprotic solvents, whereas two decay times are found in alcohols. Protonation as well as complex formation with several metal ions are investigated in acetonitrile as solvent via fluorometric titrations. The aza crown ether dye undergoes a reversible (de)protonation reaction (pKa = 0.09) and shows a approximately 50 nm blue shift in the excitation spectra and a 10-fold fluorescence increase upon protonation. The compound also forms 1:1 complexes with several metal ions (Li(+), Na(+), Mg(2+), Ca(2+), Ba(2+), Zn(2+)), producing large blue shifts in the excitation spectra and significant cation-induced fluorescence amplifications.  相似文献   

12.
Mg(2+) can lead to the fluorescence enhancement of a dye molecule as high as 47.3-fold while L-proline acts as a promoter in this multicomponent sensory system. The fluorescence color could be easily detected by the naked eye under a UV-lamp.  相似文献   

13.
We report here electronic absorption, fluorescence and resonance Raman studies of rhodamine 6G laser dye dispersed in the polymethylcyanoacrylate matrix. In the electronic absorption and fluorescence spectra of dispersed rhodamine 6G, band maxima are red shifted compared to solution. Raman spectra show some new bands. These spectral changes arise due to matrix effect and interaction between rhodamine 6G and the host material involving amine group of rhodamine.  相似文献   

14.
A molecular switch was prepared by self-assembly. Neutravidin served as a template that allowed for a biotinylated probe oligonucleotide to be placed adjacent to a biotinylated long-chain linker that was terminated with thiazole orange (TO). Hybridization of probe oligonucleotide with target to form double-stranded DNA resulted in intercalation of the adjacent TO probe. This was a reversible process that could be tracked by fluorescence intensity changes. Formamide was used as a denaturant for double-stranded DNA, and could be used to depress thermal denaturation temperatures. In this work formamide had a dual function, providing for control of hybridization selectivity at room temperature, while concurrently ameliorating non-specific adsorption to improve signal-to-noise when using thiazole orange as a fluorescence signalling agent to determine oligonucleotide hybridization. Room temperature single nucleotide polymorphism (SNP) discrimination for oligonucleotide targets was achieved both in solution and for molecular switches that were immobilized onto optical fibers. In solution, a concentration of 18.5% formamide provided greater than 40-fold signal difference between single-stranded DNA and double-stranded DNA, in contrast to only a 2-fold difference in the absence of formamide. Selectivity for SNP determination in solution was demonstrated using targets of varying lengths including a 141-base PCR amplicon. The improved signal-to-noise achieved by use of formamide is likely due to preferential displacement of dye molecules that are otherwise electrostatically bound to the polyanionic nucleic acid backbone.  相似文献   

15.
Polymeric fluorescent dyes for labeling of proteins and nucleic acids   总被引:1,自引:0,他引:1  
In order to increase the sensitivity of fluorescence labeling in biochemical reactions and diagnostic procedures a labeling technique with polymeric fluorescence dyes was established and tested for its applicability. The fluorescence dye is based on the fluorophor coumarine and was covalently linked to the model proteins strepavidine and IgG. The dye was synthesized by radical polymerization of three different types of functional monomers to ensure water solubility, covalent coupling to proteins, and fluorescence. The molecular weight range was between 20 and 200 kDa. Fractions of narrow molecular weight distribution were prepared by gel filtration on Superdex 200. The relationship between size and charge of the different fractions was analyzed by gel electrophoresis. Covalent conjugation to proteins was carried out by formation of a peptide bond between a carboxylic group of the functional monomers and an amino group of the protein mediated by 1-ethyl-3-(3-dimethylamino-propyl)-carbodiimide (EDC). A novel type of gel electrophoresis was developed in order to analyze and optimize the conjugation reaction; the results were in agreement with those from analytical ultracentrifugation with fluorescence detection. Hydrodynamic studies of the uncoupled dye and the protein-dye conjugates exhibited a drastic decrease of Stokes radius of the dye due to the coupling to the protein. Under optimum conditions the fluorescence intensity of a protein-polymeric dye conjugate was enhanced 40-fold compared to a monomeric dye. Biotin binding to the protein streptavidin was not affected significantly by the conjugation with the polymeric dye. At present, the applicability of the polymeric dye in biochemical and diagnostic reactions seems to be limited due to strong but unspecific hydrophobic interactions which might be overcome by using fluoresceine as monomeric dye.  相似文献   

16.
A new method for the fluorometric detection of the neurotransmitter acetylcholine (ACh) in water is presented. Use of the fluorescence of dansylcholine (DANCh) bound to p-sulfonated calix[8]arene affords a new fluorometric method for the detection of ACh (>10-4 M) inaqueous solution (pH = 6.9). The fluorescence intensity of DANCh in aqueous solution was enhanced 1.8 fold after the complexation with p-sulfonated calix[8]arene. The addition of ACh to the aqueous solution of the DANCh-calix[8]arene complex significantly decreased the fluorescence intensity, which results from the replacement of DANCh in the complex with ACh. The effects of other synaptic neurotransmitters on the fluorescence of the DANCh complex were examined for dopamine, histamine, ATP, GABA, glycine, l-glutamic acid, and l-aspartic acid. Among the neurotransmitters studied, ACh was most effective in changing the fluorescence of the DANCh complex. Possible application of the DANCh complex dye for the detection of ACh in biological systems is discussed.  相似文献   

17.
Combined magnetic and fluorescence cell sorting were used to select Fluorogen Activating Proteins (FAPs) from a yeast surface-displayed library for binding to the fluorogenic cyanine dye Dimethyl Indole Red (DIR). Several FAPs were selected that bind to the dye with low nanomolar Kd values and enhance fluorescence more than 100-fold. One of these FAPs also exhibits considerable promiscuity, binding with high affinity to several other fluorogenic cyanine dyes with emission wavelengths covering most of the visible and near-IR regions of the spectrum. This significantly expands the number and wavelength range of scFv-based fluoromodules.  相似文献   

18.
The specific combination of human serum albumin and fluorescent dye will endow superior performance to a coupled fluorescent platform for in vivo fluorescence labeling. In this study, we found that lysine-161 in human serum albumin is a covalent binding site and could spontaneously bind a ketone skeleton quinoxaline–coumarin fluorescent dye with a specific turn-on fluorescence signal for the first time. Supported by the abundant drug binding domains in human serum albumin, drugs such as ibuprofen, warfarin and clopidogrel could interact with the fluorescent dye labeled human serum albumin to feature a substantial enhancement in fluorescence intensity (6.6-fold for ibuprofen, 4.5-fold for warfarin and 5-fold for clopidogrel). The drug concentration dependent fluorescence intensity amplification realized real-time, in situ blood drug concentration monitoring in mice, utilizing ibuprofen as a model drug. The non-invasive method avoided continuous blood sample collection, which fundamentally causes suffering and consumption of experimental animals in the study of pharmacokinetics. At the same time, the coupled fluorescent probe can be efficiently enriched in tumors in mice which could map a tumor with a high-contrast red fluorescence signal and could hold great potential in clinical tumor marking and surgical resection.

HSA lysine-161 covalent bound quinoxaline–coumarin based fluorescent dye realized in situ blood drug concentration monitoring and tumor visualization.  相似文献   

19.
In this article, we present a new and simple, yet efficient, two-step approach to synthesize 4,4'-bis(dibutylaminostyrylstyryl)-2,2'-bipyridine with high yield, as well as its linear and nonlinear optical characterizations in THF and toluene solutions. We show that its one- and two-photon absorption spectra are similar in both solvents. Nevertheless, the relaxation processes of this compound exhibit dependence on the solvent polarity. The one- and two-photon induced fluorescence signal of this molecule in solution reveals that its excited state is highly stabilized in THF solution rather than in toluene. Analysis of the fluorescence quantum yield, lifetime, and radiative and nonradiative decay rates are in agreement with Lippert's model for solute-solvent interactions. The optical measurements demonstrate that this dye is a promising candidate for multiphoton fluorescence imaging, optical limiting, and dye lasers.  相似文献   

20.
Imaging dynamics of membrane proteins of live cells in a wash-free and real-time manner has been a challenging task. Herein, we report unprecedented applications of malachite green(MG), an organic dye widely used in pigment industry, as a switchable fluorophore to monitor membrane enzymes or noncatalytic proteins in live cells. Conformationally flexible MG is non-fluorescent in aqueous solution, yet covalent binding with endogenous proteins of cells significantly enhances its fluorescence at 670...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号