首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The following conjecture of Katona is proved. Let X be a finite set of cardinality n, 1 ? m ? 2n. Then there is a family F, |F| = m, such that F ∈ F, G ? X, | G | > | F | implies G ∈ F and F minimizes the number of pairs (F1, F2), F1, F2F F1 ∩ F2 = ? over all families consisting of m subsets of X.  相似文献   

2.
Let X1, X2, X3, … be i.i.d. r.v. with E|X1| < ∞, E X1 = μ. Given a realization X = (X1,X2,…) and integers n and m, construct Yn,i, i = 1, 2, …, m as i.i.d. r.v. with conditional distribution P1(Yn,i = Xj) = 1n for 1 ? j ? n. (P1 denotes conditional distribution given X). Conditions relating the growth rate of m with n and the moments of X1 are given to ensure the almost sure convergence of (1mmi=1 Yn,i toμ. This equation is of some relevance in the theory of Bootstrap as developed by Efron (1979) and Bickel and Freedman (1981).  相似文献   

3.
Let Pij and qij be positive numbers for ij, i, j = 1, …, n, and consider the set of matrix differential equations x′(t) = A(t) x(t) over all A(t), where aij(t) is piecewise continuous, aij(t) = ?∑ijaij(t), and pij ? aij(t) ? qij all t. A solution x is also to satisfy ∑i = 1nxi(0) = 1. Let Ct denote the set of all solutions, evaluated at t to equations described above. It is shown that Ct, the topological closure of Ct, is a compact convex set for each t. Further, the set valued function Ct, of t is continuous and limitt → ∞C?t = ∩ C?t.  相似文献   

4.
A t-spread set [1] is a set C of (t + 1) × (t + 1) matrices over GF(q) such that ∥C∥ = qt+1, 0 ? C, I?C, and det(X ? Y) ≠ 0 if X and Y are distinct elements of C. The amount of computation involved in constructing t-spread sets is considerable, and the following construction technique reduces somewhat this computation. Construction: Let G be a subgroup of GL(t + 1, q), (the non-singular (t + 1) × (t + 1) matrices over GF(q)), such that ∥G∥|at+1, and det (G ? H) ≠ 0 if G and H are distinct elements of G. Let A1, A2, …, An?GL(t + 1, q) such that det(Ai ? G) ≠ 0 for i = 1, …, n and all G?G, and det(Ai ? AjG) ≠ 0 for i > j and all G?G. Let C = &{0&} ∪ G ∪ A1G ∪ … ∪ AnG, and ∥C∥ = qt+1. Then C is a t-spread set. A t-spread set can be used to define a left V ? W system over V(t + 1, q) as follows: x + y is the vector sum; let e?V(t + 1, q), then xoy = yM(x) where M(x) is the unique element of C with x = eM(x). Theorem: LetCbe a t-spread set and F the associatedV ? Wsystem; the left nucleus = {y | CM(y) = C}, and the middle nucleus = }y | M(y)C = C}. Theorem: ForCconstructed as aboveG ? {M(x) | x?Nλ}. This construction technique has been applied to construct a V ? W system of order 25 with ∥Nλ∥ = 6, and ∥Nμ∥ = 4. This system coordinatizes a new projective plane.  相似文献   

5.
Let S be a set of n elements, and k a fixed positive integer <12n. Katona's problem is to determine the smallest integer m for which there exists a family A = {A1, …, Am} of subsets of S with the following property: |i| ? k (i = 1, …, m), and for any ordered pair xi, xiS (ij) there is A1A such that xiA1, xj ? A1. It is given in this note that m = ?2nk? if12k2 ? 2.  相似文献   

6.
7.
We consider the problem of updating input-output matrices, i.e., for given (m,n) matrices A ? 0, W ? 0 and vectors u ? Rm, v?Rn, find an (m,n) matrix X ? 0 with prescribed row sums Σnj=1Xij = ui (i = 1,…,m) and prescribed column sums Σmi=1Xij = vj (j = 1,…,n) which fits the relations Xij = Aij + λiWij + Wij + Wijμj for all i,j and some λ?Rm, μ?Rn. Here we consider the question of existence of a solution to this problem, i.e., we shall characterize those matrices A, W and vectors u,v which lead to a solvable problem. Furthermore we outline some computational results using an algorithm of [2].  相似文献   

8.
Let X1, …, Xn be n disjoint sets. For 1 ? i ? n and 1 ? j ? h let Aij and Bij be subsets of Xi that satisfy |Aij| ? ri and |Bij| ? si for 1 ? i ? n, 1 ? j ? h, (∪i Aij) ∩ (∪i Bij) = ? for 1 ? j ? h, (∪i Aij) ∩ (∪i Bil) ≠ ? for 1 ? j < l ? h. We prove that h?Πi=1nri+siri. This result is best possible and has some interesting consequences. Its proof uses multilinear techniques (exterior algebra).  相似文献   

9.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

10.
Let X?C be compact, 0>nZ, and g a continuous function on X. Let R(n,g,X) be the rational module consisting of the functions on X of the type r0 + r1g + ··· + rngn, where rj is a rational function with poles off X, 0 ? j ? n. It is shown that if X is nowhere dense, g is sufficiently smooth, and \?t6g(z) ≠ 0, z ∈ X, then the restriction to X of each function in C∈(C) is approximable in the Lip(n ? 1, X)-norm, n ? 2, by functions in R(n, g, X). Also dealt with are approximation problems in Sobolev norms by more general types of rational modules.  相似文献   

11.
It was proved by Erdös, Ko, and Radó (Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser.12 (1961), 313–320.) that if A = {;A1,…, Al}; consists of k-subsets of a set with n > 2k elements such that AiAj ≠ ? for all i, j then l ? (k?1n?1). Schönheim proved that if A1, …, Al are subsets of a set S with n elements such that Ai ? Aj, AiAjø and AiAjS for all ij then l ? ([n2] ? 1n ? 1). In this note we prove a common strengthening of these results.  相似文献   

12.
A p-cover of n = {1, 2,…,n} is a family of subsets Si ≠ ? such that ∪ Si = n and |SiSi| ? p for ij. We prove that for fixed p, the number of p-cover of n is O(np+1logn).  相似文献   

13.
Let (Xn)n?N be a sequence of real, independent, not necessarily identically distributed random variables (r.v.) with distribution functions FXn, and Sn = Σi=1nXi. The authors present limit theorems together with convergence rates for the normalized sums ?(n)Sn, where ?: NR+, ?(n) → 0, n → ∞, towards appropriate limiting r.v. X, the convergence being taken in the weak (star) sense. Thus higher order estimates are given for the expression ∝Rf(x) d[F?(n)Sn(x) ? FX(x)] which depend upon the normalizing function ?, decomposability properties of X and smoothness properties of the function f under consideration. The general theorems of this unified approach subsume O- and o-higher order error estimates based upon assumptions on associated moments. These results are also extended to multi-dimensional random vectors.  相似文献   

14.
Let Lj (j = 1, …, n + 1) be real linear functions on the convex set F of probability distributions. We consider the problem of maximization of Ln+1(F) under the constraint F ? F and the equality constraints L1(F) = z1 (i = 1, …, n). Incorporating some of the equality constraints into the basic set F, the problem is equivalent to a problem with less equality constraints. We also show how the dual problems can be eliminated from the statement of the main theorems and we give a new illuminating proof of the existence of particular solutions.The linearity of the functions Lj(j = 1, …, n + 1) can be dropped in several results.  相似文献   

15.
Let Xj = (X1j ,…, Xpj), j = 1,…, n be n independent random vectors. For x = (x1 ,…, xp) in Rp and for α in [0, 1], let Fj1(x) = αI(X1j < x1 ,…, Xpj < xp) + (1 ? α) I(X1jx1 ,…, Xpjxp), where I(A) is the indicator random variable of the event A. Let Fj(x) = E(Fj1(x)) and Dn = supx, α max1 ≤ Nn0n(Fj1(x) ? Fj(x))|. It is shown that P[DnL] < 4pL exp{?2(L2n?1 ? 1)} for each positive integer n and for all L2n; and, as n → ∞, Dn = 0((nlogn)12) with probability one.  相似文献   

16.
An F-space (complete metric linear space) is minimal if it admits no strictly weaker linear Hausdorff topology, and quotient (q-) minimal if all of its Hausdorff quotients are minimal. Two F-spaces are (q-minimally) minimally s-comparable if they have no isomorphic (q-) nonminimal closed linear subspaces. It is proved that if X, Y are (q-minimally (resp., minimally) s-comparable F-subspaces of an arbitrary topological linear space E (resp., with XY = {0}), then X + Y is an F-subspace of E. Also, if X1,…, Xn are F-subspaces of E, then X1 + ··· + Xn is an F-subspace of E, provided that XiFandXjG are minimally s-comparable whenever F and G are closed minimal subspaces of Xi and Xj, ij. These are analogs of some results due to Gurariǐ and Rosenthal concerning totally incomparable Banach spaces.  相似文献   

17.
Let Mm,n(F) denote the space of all mXn matrices over the algebraically closed field F. A subspace of Mm,n(F), all of whose nonzero elements have rank k, is said to be essentially decomposable if there exist nonsingular mXn matrices U and V respectively such that for any element A, UAV has the form
UAV=A1A2A30
where A1 is iX(k–i) for some i?k. Theorem: If K is a space of rank k matrices, then either K is essentially decomposable or dim K?k+1. An example shows that the above bound on non-essentially-decomposable spaces of rank k matrices is sharp whenever n?2k–1.  相似文献   

18.
Let X = [1, n] be a finite set of cardinality n and let F be a family of k-subsets of X. Suppose that any two members of F intersect in at least t elements and for some given positive constant c, every element of X is contained in less than c |F| members of F. How large |F| can be and which are the extremal families were problems posed by Erdös, Rothschild, and Szemerédi. In this paper we answer some of these questions for n > n0(k, c). One of the results is the following: let t = 1, 37 < c < 12. Then whenever F is an extremal family we can find a 7-3 Steiner system B such that F consists exactly of those k-subsets of X which contain some member of B.  相似文献   

19.
Let {Ai} be a family of sets and let S = ∩iAi. By a positional game we shall mean a game played by two players on {Ai}. The players alternately pick elements of S and that player wins who fist has all the elements of one of the Ai. This paper deals with almost disjoint hypergraphs only, i.e., |AiAj| ? 1 if ij. Let M1(n) be the smallest integer for which there is an almost disjoint n-uniform hypergraph |T| = M1(n), so that the first player has a winning strategy. It is shown that limn [M1(n)]1n = 4, which was conjectured by Erdös. The same method is applied to prove a conjecture of Hales and Jewett on r-dimensional tick-tack-toe if r is large enough. Finally we prove that for an arbitrary almost disjoint n-uniform hypergraph the second player has such a strategy that the first player unable to win in his mth move if m < (2 ? ?)n.  相似文献   

20.
The following is proved (in a slightly more general setting): Let α1, …, αm be positive real, γ1, …, γm real, and suppose that the system [i + γi], i = 1, …, m, n = 1, 2, …, contains every positive integer exactly once (= a complementing system). Then αiαj is an integer for some ij in each of the following cases: (i) m = 3 and m = 4; (ii) m = 5 if all αi but one are integers; (iii) m ? 5, two of the αi are integers, at least one of them prime; (iv) m ? 5 and αn ? 2n for n = 1, 2, …, m ? 4.For proving (iv), a method of reduction is developed which, given a complementing system of m sequences, leads under certain conditions to a derived complementing system of m ? 1 sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号