首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.

In present work, we describe the synthesis of graphite intercalation compounds with perrhenic acid (HReO4-GIC) through the anodic oxidation of graphite in aqueous perrhenic acid solution and their thermal exfoliation. Due to electrochemical treatment of graphite in perrhenic acid solution, ReO4 ions are intercalated into interlayer spaces of graphite. Anodic oxidation of graphite in HReO4 solution leads to the formation of 3-stage GIC. Simultaneously, some amount of perrhenic acid becomes deposited on the graphite surface and edges. In the next step, thermal treatment of the previously synthesized GIC was performed, causing both the exfoliation of graphitic structure and transformation of perrhenic acid into rhenium oxides on the surface of graphene layers. The yielded product was exfoliated graphite-ReO2/ReO3 composite. The obtained composite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. Additionally, specific surface area of the exfoliated materials was measured.

  相似文献   

2.
The development of electrocatalysts is crucial for renewable energy applications. Metal‐doped graphene hybrid materials have been explored for this purpose, however, with much focus on noble metals, which are limited by their low availability and high costs. Transition metals may serve as promising alternatives. Here, transition metal‐doped graphene hybrids were synthesized by a simple and scalable method. Metal‐doped graphite oxide precursors were thermally exfoliated in either hydrogen or nitrogen atmosphere; by changing exfoliation atmospheres from inert to reductive, we produced materials with different degrees of oxidation. Effects of the presence of metal nanoparticles and exfoliation atmosphere on the morphology and electrocatalytic activity of the hybrid materials were investigated using electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, and cyclic voltammetry. Doping of graphene with transition metal nanoparticles of the 4th period significantly influenced the electrocatalysis of compounds important in energy production and storage applications, with hybrid materials exfoliated in nitrogen atmosphere displaying superior performance over those exfoliated in hydrogen atmosphere. Moreover, nickel‐doped graphene hybrids displayed outstanding electrocatalytic activities towards reduction of O2 when compared to bare graphenes. These findings may be exploited in the research field of renewable energy.  相似文献   

3.
In this paper are reported some experimental data related to the influence of preparation regimes and characteristics of exfoliated graphite based sorbents produced by thermal expansion of H2SO4-graphite intercalation compounds (H2SO4-GICs) on their sorption properties. Investigations involving X-ray diffraction analyses, surface area, bulk density and oil sorption capacity measurements, have been performed. Sorption capacity was discussed as a function of bulk density, total pore volume and surface area. Some empirical correlation between studied characteristics of exfoliated graphite have been found. The differences among the obtained samples, as a consequence of synthesis conditions, were also put in evidence by thermal analysis (TG, DTG and DTA) performed after their exposure to oil sorption.It was found that thermal analysis method could provide information about the exfoliated graphite pore system related to the sorbed oil oxidation rate. The capacity for oil uptake was also discussed in the case of graphite oxide soot.  相似文献   

4.
Electrocatalysis of oxygen reduction using Pt nanoparticles supported on functionalized graphene sheets (FGSs) was studied. FGSs were prepared by thermal expansion of graphite oxide. Pt nanoparticles with average diameter of 2 nm were uniformly loaded on FGSs by impregnation methods. Pt-FGS showed a higher electrochemical surface area and oxygen reduction activity with improved stability as compared with the commercial catalyst. Transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization suggest that the improved performance of Pt-FGS can be attributed to smaller particle size and less aggregation of Pt nanoparticles on the functionalized graphene sheets.  相似文献   

5.
以天然鳞状石墨为原料,采用化学氧化法合成氧化石墨,在此基础上采用低温热解膨胀结合微波加热乙二醇还原法合成石墨烯(Gr)以及铂/石墨烯(Pt/Gr)复合材料。SEM和TEM显示所制备的石墨烯为层状结构的半透明薄膜。采用X射线光电子能谱(XPS)和傅立叶转换红外光谱(FTIR)分别确定氧化石墨、膨胀石墨及石墨烯表面含氧官能团的数量和性质。以所制备的碳氧原子比5.94的石墨烯作为载体制备出可用于质子交换膜燃料电池的高负载量的Pt/Gr催化剂,在铂载量高达60%时,表面铂粒子依然具有高分散性,平均粒径为3.8 nm。  相似文献   

6.
王丽  马俊红 《物理化学学报》2001,30(7):1267-1273
采用高温热解聚苯胺修饰的氧化石墨烯(PANI-GO),得到了氮掺杂的还原氧化石墨烯碳材料(N-RGO),以其负载Pt 制备了Pt/N-RGO纳米结构电催化剂. 采用透射电镜(TEM)、X射线光电子能谱(XPS)、X 射线衍射(XRD)谱及拉曼光谱等技术对N-RGO和Pt/N-RGO的形貌及结构进行了表征,用循环伏安、计时电流等电化学技术研究了Pt/N-RGO电极催化剂对CO溶出反应和甲醇电氧化反应的催化性能. 结果表明:高温热解PANIGO可同时实现GO的还原及其氮掺杂的过程,氮掺杂引起还原氧化石墨烯碳材料表面缺陷结构和导电性的增加;与相应的未掺杂氮样品Pt/RGO相比较,Pt/N-RGO样品上Pt 颗粒的分散更均匀,显示出更强的抗CO毒化能力和更高的甲醇电氧化催化活性及稳定性.  相似文献   

7.
采用高温热解聚苯胺修饰的氧化石墨烯(PANI-GO),得到了氮掺杂的还原氧化石墨烯碳材料(N-RGO),以其负载Pt制备了Pt/N-RGO纳米结构电催化剂.采用透射电镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)谱及拉曼光谱等技术对N-RGO和Pt/N-RGO的形貌及结构进行了表征,用循环伏安、计时电流等电化学技术研究了Pt/N-RGO电极催化剂对CO溶出反应和甲醇电氧化反应的催化性能.结果表明:高温热解PANIGO可同时实现GO的还原及其氮掺杂的过程,氮掺杂引起还原氧化石墨烯碳材料表面缺陷结构和导电性的增加;与相应的未掺杂氮样品Pt/RGO相比较,Pt/N-RGO样品上Pt颗粒的分散更均匀,显示出更强的抗CO毒化能力和更高的甲醇电氧化催化活性及稳定性.  相似文献   

8.
Au/graphene nanocomposites are prepared via a one-pot chemical reduction process at room temperature, using graphene oxide (GO) and chloroauric acid (HAuCl4) as precursors. The obtained Au/graphene nanocomposites are characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). TEM shows that the Au nanoparticles with size of approximately 8.7 nm disperse randomly on the surface of graphene. XPS confirms that the Au/graphene nanocomposites show a higher atomic percentage of C/O (6.3/1), in contrast to its precursor GO (2.2/1). Electrochemical studies reveal that the Au/graphene nanocomposites have electrochemically active surface area of 9.82 m2 g?1. Besides, the influence of borohydride concentration on the as-prepared Au/graphene nanocomposites is investigated in details by cyclic voltammetry, chronoamperometry, and chronopotentiometry. The results indicate that high concentration of borohydride can significantly improve the electrochemical performance of the Au/graphene catalyst.  相似文献   

9.
用一步合成自组装法制备出了氢氧化钴与还原氧化石墨烯(Co(OH)2/rGO)的复合催化剂,并将其用于水中染料的催化降解实验. 通过X射线衍射(XRD),激光拉曼(Raman)光谱,透射电镜(TEM),X射线能量色散谱(EDS)以及X射线光电子能谱(XPS)等一系列分析手段对催化剂的结构形貌进行了详细的表征,表征结果证实氢氧化钴很好地附着在还原石墨烯的表面. 最后初步考察了催化剂催化单过硫酸钾(PMS)降解酸性橙(AO7)的性能. 结果表明,催化剂显示出了高效的催化性能,酸性橙的色度可在12 min内完全去除,总有机碳(TOC)实验也表明染料降解的同时也可获得较高的矿化度. 循环稳定性实验表明在进行到第三次实验时,催化剂仍能保持高的催化活性,将酸性橙在16 min内降解完毕.  相似文献   

10.
A method to obtain previously unknown layered structure composed of stacks of perforated graphene sheets is developed. The method consists in the thermal decomposition of graphite oxide in the concentrated H2SO4 and H3PO4 medium. In order to confirm the presence of holes in graphene layers, a large set of chemical and physicochemical analysis methods are applied. Based on a new matrix, treated thermally and chemically, layered compounds are obtained: oxide, fluoride, and fluoroxide of two types. The obtained compounds are analyzed by transmission electron microscopy, infrared absorption spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and powder X-ray diffraction.  相似文献   

11.
利用具有三维连续纳米孔结构的热剥离石墨烯为骨架制备Li4Ti5O12/石墨烯纳米复合材料。通过乙醇挥发法在热剥离石墨烯的纳米孔道内引入前驱物,进一步高温热处理,在热剥离石墨烯的孔道内原位形成Li4Ti5O12纳米粒子。利用复合材料作为锂离子电池电极材料。电化学反应过程中,热剥离石墨烯的三维连续结构确保了Li4Ti5O12纳米粒子与石墨烯在长循环过程中的有效接触。因此,复合材料表现出优异的循环稳定性。在5C下,5 000次循环后,其容量保持率高达94%。  相似文献   

12.
The reduced graphene oxide is interesting material for the synthesis of TiO2-based photocatalyst. In the present investigation, blackberry fruit, which contains high levels of anthocyanins and other phenolic compounds, was employed as a reducing agent mainly due to its high antioxidant capacity. The nano-crystalline TiO2 was decorated on different amounts of graphene oxide with sol–gel method and then the photocatalytic activity for degradation of cationic dye was evaluated by UV spectroscopy to achieve the optimum content of graphene oxide. The decoration of anatase nanoparticles on prepared reduced graphene oxide was investigated by X-ray diffraction, scanning and transmission electron microscopy techniques. The new composite gives significantly higher activity when is compared to the compositions fabricated by graphene oxide. The compact layer provides a large TiO2-graphene contact area and reduces the electron recombination. The decoration of TiO2 nanoparticles, 5–10 nm, on the graphene oxide reduced by blackberry juice further improves the dye removal. The results imply that the nanoparticle decoration is the key strategy to increase the degradation capacity.  相似文献   

13.
采用四氯化钛(TiCl4)和氧化石墨为主要原料, 通过原位复合的方法制备了氧化钛/氧化石墨(TiO2/GO)纳米复合材料. 采用傅里叶变换红外(FTIR)光谱仪、X射线衍射(XRD)仪、热重-差热分析(TG-DTA)仪、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)等手段研究了TiO2/GO纳米复合材料的结构和性能. 结果表明, 石墨在氧化过程中结构层键合大量含氧官能团, 部分含氧官能团进一步与纳米TiO2以化学键结合; 复合后氧化石墨原有衍射峰消失. 将TiO2/GO添加到水性聚氨酯(WPU)中, 制备了TiO2/GO-WPU复合涂膜. 紫外吸收光谱表明, 随着氧化石墨含量的增加, 复合涂膜的紫外吸收能力增强, 当GO含量达到一定数值时, 涂膜的紫外吸收最强, 随着GO含量继续增加吸收又呈下降趋势, 存在一较优浓度值. TiO2/GO的添加显著提高了聚氨酯涂层的抗紫外线性能, 耐磨损性能和热稳定性能.  相似文献   

14.
以鳞片石墨为原料, 用改进的Hummers法制备氧化石墨烯(GO), 以异丙醇钛为钛源经一步水热法制备得到金红石相TiO2-石墨烯复合材料(rGO-TiO2), 考察了氧化石墨烯用量对复合材料光催化性能的影响. 采用X射线衍射(XRD), 比表面积(BET), 透射电镜(TEM), 扫描电镜(SEM), 拉曼光谱, 紫外-可见(UV-Vis)吸收光谱和荧光光谱(PL)等测试手段对复合材料进行表征. 结果表明: 复合材料中TiO2为针簇状结构的金红石相, 与石墨烯能够均匀复合; 与纯金红石相TiO2相比, 复合材料具有较大的比表面积. 研究了该复合材料在紫外光下对罗丹明B 以及可见光下对甲基橙光降解效果. 当氧化石墨烯浓度为0.5 mg·mL-1时, 制备得到的复合材料rGO-TiO2具有较好的光催化效果.  相似文献   

15.
In this work, we report the preparation of graphene nanoplatelet which covalently functionalized with PMMA chains by introduction of vinyl groups onto graphene surface through simple esterification reaction between hydroxyl groups of graphite oxide and methacrylic anhydride. The synthesis is followed by in-situ polymerization with MMA monomers. The structural properties were characterized with X-ray diffraction spectroscopy (XRD) and scanning electronic microscopy (SEM) that showed the crystalline graphite is converted to individual layers during the synthesis steps. The grafting of PMMA chains was monitored with IR spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The TGA results revealed 40% wt of PMMA chains chemically grafted onto graphene surface. Significant increase in glass transition temperature (Tg) and existence of polymer chains in two positions (physically absorbed and chemically grafting onto graphite surface) are indicated by differential scanning calorimetric (DSC) analysis.  相似文献   

16.
This work describes the preparation of graphene oxide by the Modified Hummers Method and the chemical modification of its surface with nanoparticles of copper pentacyanonitrosylferrate(III) (GOCuNP). The materials obtained were characterized by Raman spectroscopy, x‐ray photoelectron spectroscopy and transmission electron microscopy. The GOCuNP was characterized by cyclic voltammetry using a graphite paste electrode that presented electrocatalytic response for N‐acetylcysteine with detection limit of 2.97×10?5 mol L?1 at concentration range of 3.00×10?5 to 6.00×10?3 mol L?1 of N‐acetylcysteine. By this way, the bimetallic complex formed is included in the list of materials obtained as potential candidates for the construction of electrochemical sensors for N‐acetylcysteine detection.  相似文献   

17.
改进液相氧化还原法制备高性能氢气吸附用石墨烯   总被引:1,自引:0,他引:1  
以液相氧化还原法为基础,并在分散剂十二烷基苯磺酸钠(SDBS)作用下制备得到高质量石墨烯,有效避免了在此过程中石墨烯大量团聚的现象.采用X射线衍射(XRD)、拉曼光谱(RS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和原子力显微镜(AFM)等分析手段对石墨烯样品进行了表征.XRD结果体现了石墨、氧化石墨和石墨烯晶型结构的区别;SEM和TEM结果显示石墨烯呈网格状,表面平整,缺陷少;AFM分析表明样品中单层石墨烯厚度约为1.3 nm,同时也存在少许双层结构.BET测试法得到石墨烯的比表面积高达1206 m2·g-1,考察了石墨烯在高压条件下对H2的吸附性能.通过对方法改进前后所制备的石墨烯样品进行比较,结果表明,十二烷基苯磺酸钠的加入有效地减小了石墨烯的大量团聚,且得到了高质量的石墨烯.在25和55℃条件下,高质量石墨烯对氢气的吸附量分别达到1.7%(w)和1.1%(w),比之前研究结果有了很大提高.  相似文献   

18.
X-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES), and near edge X-ray absorption fine structure (NEXAFS) spectroscopy are used for in situ studies of the electronic structure of lithiated natural graphite produced by thermal deposition of lithium upon graphite in a vacuum. By XPS and NEXAFS spectroscopy it is found that lithium vapor thermal deposition results in the formation of a lithiated graphite surface layer and a change in its electronic structure. Based on the quantum chemical simulation of the experimental СKα XES spectrum of lithiated graphite, it is found that lithium atoms are located mostly on the edges of graphite crystallites. Atomic force microscopy reveals that the size of natural graphite flakes varies from 50 nm to 200 nm.  相似文献   

19.
Nanographene- and graphene-based nanohybrids have garnered attention in the biomedical community owing to their biocompatibility, excellent aqueous processability, ease of cellular uptake, facile surface functionalization, and thermal and electrical conductivities. NiO nanoparticle-graphene nanohybrid (G-NiO) was synthesized by first depositing Ni(OH)2 onto the surface of graphene oxide (GO) sheets. The Ni(OH)2-GO hybrids were then reduced to G-NiO using date palm syrup at 85 °C. The prepared G-NiO nanohybrids were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The NiO nanoparticles, with a diameter of approximately 20–30 nm, were uniformly dispersed over the surface of the graphene sheets. The G-NiO hybrids exhibit biocompatibility in human mesenchymal stem cells (hMSCs) up to 100 μg/mL. The nanohybrids do not cause any significant changes in cellular and nuclear morphologies in hMSCs. The as-synthesized nanohybrids show excellent biocompatibility and could be a promising material for biomedical applications.  相似文献   

20.
Palladium nanoparticles and nanowires electrochemically deposited onto a carbon surface were studied using cyclic voltammetry, impedance spectroscopy and atomic force microscopy. The ex situ and in situ atomic force microscopy (AFM) topographic images showed that nanoparticles and nanowires of palladium were preferentially electrodeposited to surface defects on the highly oriented pyrolytic graphite surface and enabled the determination of the Pd nanostructure dimensions on the order of 50–150 nm. The palladium nanoparticles and nanowires electrochemically deposited onto a glassy carbon surface behave differently with respect to the pH of the electrolyte buffer solution. In acid or mild acid solutions under applied negative potential, hydrogen can be adsorbed/absorbed onto/into the palladium lattice. By controlling the applied negative potential, different quantities of hydrogen can be incorporated, and this process was followed, analysing the oxidation peak of hydrogen. It is also shown that the growth of the Pd oxide layer begins at negative potentials with the formation of a pre-monolayer oxide film, at a potential well before the hydrogen evolution region. At positive potentials, Pd(0) nanoparticles undergo oxidation, and the formation of a mixed oxide layer was observed, which can act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Depending on thickness and composition, this oxide layer can be reversibly reduced. AFM images confirmed that the PdO and PdO2 oxides formed on the surface may act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号