首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple objectives and dynamics characterize many sequential decision problems. In the paper we consider returns in partially ordered criteria space as a way of generalization of single criterion dynamic programming models to multiobjective case. In our problem evaluations of alternatives with respect to criteria are represented by distribution functions. Thus, the overall comparison of two alternatives is equivalent to the comparison of two vectors of probability distributions. We assume that the decision maker tries to find a solution preferred to all other solutions (the most preferred solution). In the paper a new interactive procedure for stochastic, dynamic multiple criteria decision making problem is proposed. The procedure consists of two steps. First, the Bellman principle is used to identify the set of efficient solutions. Next interactive approach is employed to find the most preferred solution. A numerical example and a real-world application are presented to illustrate the applicability of the proposed technique.  相似文献   

2.
This paper modifies the affine-scaling primal algorithm to multiobjective linear programming (MOLP) problems. The modification is based on generating search directions in the form of projected gradients augmented by search directions pointing toward what we refer to as anchoring points. These anchoring points are located on the boundary of the feasible region and, together with the current, interior, iterate, define a cone in which we make the next step towards a solution of the MOLP problem. These anchoring points can be generated in more than one way. In this paper we present an approach that generates efficient anchoring points where the choice of termination solution available to the decision maker at each iteration consists of a set of efficient solutions. This set of efficient solutions is being updated during the iterative process so that only the most preferred solutions are retained for future considerations. Current MOLP algorithms are simplex-based and make their progress toward the optimal solution by following an exterior trajectory along the vertices of the constraints polytope. Since the proposed algorithm makes its progress through the interior of the constraints polytope, there is no need for vertex information and, therefore, the search for an acceptable solution may prove less sensitive to problem size. We refer to the resulting class of MOLP algorithms that are based on the affine-scaling primal algorithm as affine-scaling interior multiobjective linear programming (ASIMOLP) algorithms.  相似文献   

3.
Irregularly shaped spatial disease clusters occur commonly in epidemiological studies, but their geographic delineation is poorly defined. Most current spatial scan software usually displays only one of the many possible cluster solutions with different shapes, from the most compact round cluster to the most irregularly shaped one, corresponding to varying degrees of penalization parameters imposed on the freedom of shape. Even when a fairly complete set of solutions is available, the choice of the most appropriate parameter setting is left to the practitioner, whose decision is often subjective. We propose quantitative criteria for choosing the best cluster solution, through multiobjective optimization, by finding the Pareto-set in the solution space. Two competing objectives are involved in the search: regularity of shape and scan statistic value. Instead of running sequentially a cluster-finding algorithm with varying degrees of penalization, the complete set of solutions is found in parallel, employing a genetic algorithm. The cluster significance concept is extended for this set in a natural and unbiased way, being employed as a decision criterion for choosing the optimal solution. The Gumbel distribution is used to approximate the empirical scan statistic distribution, speeding up the significance estimation. The multiobjective methodology is compared with the genetic mono-objective algorithm. The method is fast, with good power of detection. We discuss an application to breast cancer cluster detection. The introduction of the concept of Pareto-set in this problem, followed by the choice of the most significant solution, is shown to allow a rigorous statement about what is a “best solution,” without the need of any arbitrary parameter.  相似文献   

4.
In this paper we consider a production model in which multiple decision makers pool resources to produce finished goods. Such a production model, which is assumed to be linear, can be formulated as a multiobjective linear programming problem. It is shown that a multi-commodity game arises from the multiobjective linear production programming problem with multiple decision makers and such a game is referred to as a multiobjective linear production programming game. The characteristic sets in the game can be obtained by finding the set of all the Pareto extreme points of the multiobjective programming problem. It is proven that the core of the game is not empty, and points in the core are computed by using the duality theory of multiobjective linear programming problems. Moreover, the least core and the nucleolus of the game are examined. Finally, we consider a situation that decision makers first optimize their multiobjective linear production programming problem and then they examine allocation of profits and/or costs. Computational methods are developed and illustrative numerical examples are given.  相似文献   

5.
In the present paper, we concentrate on dealing with a class of multiobjective programming problems with random rough coefficients. We first discuss how to turn a constrained model with random rough variables into crisp equivalent models. Then an interactive algorithm which is similar to the interactive fuzzy satisfying method is introduced to obtain the decision maker’s satisfying solution. In addition, the technique of random rough simulation is applied to deal with general random rough objective functions and random rough constraints which are usually hard to convert into their crisp equivalents. Furthermore, combined with the techniques of random rough simulation, a genetic algorithm using the compromise approach is designed for solving a random rough multiobjective programming problem. Finally, illustrative examples are given in order to show the application of the proposed models and algorithms.  相似文献   

6.
The aim of this paper is to deal with a multiobjective linear programming problem with fuzzy random coefficients. Some crisp equivalent models are presented and a traditional algorithm based on an interactive fuzzy satisfying method is proposed to obtain the decision maker’s satisfying solution. In addition, the technique of fuzzy random simulation is adopted to handle general fuzzy random objective functions and fuzzy random constraints which are usually hard to be converted into their crisp equivalents. Furthermore, combined with the techniques of fuzzy random simulation, a genetic algorithm using the compromise approach is designed for solving a fuzzy random multiobjective programming problem. Finally, illustrative examples are given in order to show the application of the proposed models and algorithms.  相似文献   

7.
This short paper addresses both researchers in multiobjective optimization as well as industrial practitioners and decision makers in need of solving optimization and decision problems with multiple criteria. To enhance the solution and decision process, a multiobjective decomposition-coordination framework is presented that initially decomposes the original problem into a collection of smaller-sized subproblems that can be solved for their individual solution sets. A common solution for all decomposed and, thus, the original problem is then achieved through a subsequent coordination mechanism that uses the concept of epsilon-efficiency to integrate decisions on the desired tradeoffs between these individual solutions. An application to a problem from vehicle configuration design is selected for further illustration of the results in this paper and suggests that the proposed method is an effective and promising new solution technique for multicriteria decision making and optimization. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Most real-life decision-making activities require more than one objective to be considered. Therefore, several studies have been presented in the literature that use multiple objectives in decision models. In a mathematical programming context, the majority of these studies deal with two objective functions known as bicriteria optimization, while few of them consider more than two objective functions. In this study, a new algorithm is proposed to generate all nondominated solutions for multiobjective discrete optimization problems with any number of objective functions. In this algorithm, the search is managed over (p − 1)-dimensional rectangles where p represents the number of objectives in the problem and for each rectangle two-stage optimization problems are solved. The algorithm is motivated by the well-known ε-constraint scalarization and its contribution lies in the way rectangles are defined and tracked. The algorithm is compared with former studies on multiobjective knapsack and multiobjective assignment problem instances. The method is highly competitive in terms of solution time and the number of optimization models solved.  相似文献   

9.
In this paper, we consider an optimization problem which aims to minimize a convex function over the weakly efficient set of a multiobjective programming problem. To solve such a problem, we propose an inner approximation algorithm, in which two kinds of convex subproblems are solved successively. These convex subproblems are fairly easy to solve and therefore the proposed algorithm is practically useful. The algorithm always terminates after finitely many iterations by compromising the weak efficiency to a multiobjective programming problem. Moreover, for a subproblem which is solved at each iteration of the algorithm, we suggest a procedure for eliminating redundant constraints.  相似文献   

10.
In today’s manufacturing industry more than one performance criteria are considered for optimization to various degrees simultaneously. To deal with such hard competitive environments it is essential to develop appropriate multicriteria scheduling approaches. In this paper consideration is given to the problem of scheduling n independent jobs on a single machine with due dates and objective to simultaneously minimize three performance criteria namely, total weighted tardiness (TWT), maximum tardiness and maximum earliness. In the single machine scheduling literature no previous studies have been performed on test problems examining these criteria simultaneously. After positioning the problem within the relevant research field, we present a new heuristic algorithm for its solution. The developed algorithm termed the hybrid non-dominated sorting differential evolution (h-NSDE) is an extension of the author’s previous algorithm for the single-machine mono-criterion TWT problem. h-NSDE is devoted to the search for Pareto-optimal solutions. To enable the decision maker for evaluating a greater number of alternative non-dominated solutions, three multiobjective optimization approaches have been implemented and tested within the context of h-NSDE: including a weighted-sum based approach, a fuzzy-measures based approach which takes into account the interaction among the criteria as well as a Pareto-based approach. Experiments conducted on existing data set benchmarks problems show the effect of these approaches on the performance of the h-NSDE algorithm. Moreover, comparative results between h-NSDE and some of the most popular multiobjective metaheuristics including SPEA2 and NSGA-II show clear superiority for h-NSDE in terms of both solution quality and solution diversity.  相似文献   

11.
The general multiobjective dynamic programming problem is reformulated as a classical dynamic programming problem that then can be solved by regular dynamic programming methods. It is shown that the method of differential dynamic programming is most applicable for solution of this problem, which has a higher dimension state space. A case study, the management of a large natural resource system, is presented and modeled next. Finally, the model is applied to the case of bauxite mining development in Hungary, and numerical results for this case are presented.  相似文献   

12.
In conventional multiobjective decision making problems, the estimation of the parameters of the model is often a problematic task. Normally they are either given by the decision maker (DM), who has imprecise information and/or expresses his considerations subjectively, or by statistical inference from past data and their stability is doubtful. Therefore, it is reasonable to construct a model reflecting imprecise data or ambiguity in terms of fuzzy sets for which a lot of fuzzy approaches to multiobjective programming have been developed. In this paper we propose a method to solve a multiobjective linear programming problem involving fuzzy parameters (FP-MOLP), whose possibility distributions are given by fuzzy numbers, estimated from the information provided by the DM. As the parameters, intervening in the model, are fuzzy the solutions will be also fuzzy. We propose a new Pareto Optimal Solution concept for fuzzy multiobjective programming problems. It is based on the extension principle and the joint possibility distribution of the fuzzy parameters of the problem. The method relies on α-cuts of the fuzzy solution to generate its possibility distributions. These ideas are illustrated with a numerical example.  相似文献   

13.
由决策于环境的不确定性,供应商选择问题存在大量的模糊信息,传统的确定性规划模型已经不能够很好地处理此类问题。本文基于模糊需求量信息,对于多产品供应商问题建立了模糊多目标规划模型。同时考虑到各目标及约束的重要性程度不同的影响,通过引进适当的权重对多目标规划模型进行求解。文中结合实际算例验证模型的可行性和有效性。  相似文献   

14.
This paper presents a new method for multiobjective optimisation based on gradient projection and local region search. The gradient projection is conducted through the identification of normal vectors of an efficient frontier. The projection of the gradient of a nonlinear utility function onto the tangent plane of the efficient frontier at a given efficient solution leads to the definition of a feasible local region in a neighbourhood of the solution. Within this local region, a better efficient solution may be sought. To implement such a gradient-based local region search scheme, a new auxiliary problem is developed. If the utility function is given explicitly, this search scheme results in an iterative optimisation algorithm capable of general nonseparable multiobjective optimisation. Otherwise, an interactive decision making algorithm is developed where the decision maker (DM) is expected to provide local preference information in order to determine trade-off directions and step sizes. Optimality conditions for the algorithms are established and the convergence of the algorithms is proven. A multiobjective linear programming (MOLP) problem is taken for example to demonstrate this method both graphically and analytically. A nonlinear multiobjective water quality management problem is finally examined to show the potential application of the method to real world decision problems.  相似文献   

15.
In this paper, we introduce fuzzy mathematical programming (FMP) for decision-making related to software creation by selecting optimal commercial-off-the-shelf (COTS) products in a modular software system. Each module in such software systems have different alternatives with variations in their properties, for example, quality, reliability, execution time, size and cost. Due to these variations, component-based software developers generally deals with the problem of selecting appropriate COTS products. The development of COTS-based systems largely depends on the success of the selection process. Various crisp optimization models of COTS products selection have been proposed in literature. However, in real COTS products selection problem, it is difficult to estimate precisely the values of various model parameters due to lack of sufficient data and also because of measurement errors. Hence, instead of crisp optimization model, if we use flexible optimization model then we might obtain results which are more preferred by the decision maker. In this study, we use multiple methodologies such as quality model, analytical hierarchy process and FMP to develop fuzzy multiobjective optimization model of the COTS products selection. To determine a preferred compromise solution for the multiobjective optimization problem, an interactive fuzzy approach is used.  相似文献   

16.
17.
This paper is intended to design goal programming models for capturing the decision maker's (DM's) preference information and for supporting the search for the best compromise solutions in multiobjective optimization. At first, a linear goal programming model is built to estimate piecewise linear local utility functions based on pairwise comparisons of efficient solutions as well as objectives. The interactive step trade-off method (ISTM) is employed to generate a typical subset of efficient solutions of a multiobjective problem. Another general goal programming model is then constructed to embed the estimated utility functions in the original multiobjective problem for utility optimization using ordinary nonlinear programming algorithms. This technique, consisting of the ISTM method and the newly investigated search process, facilitates the identification and elimination of possible inconsistent information which may exist in the DM's preferences. It also provides various ways to carry out post-optimality analysis to test the robustness of the obtained best solutions. A modified nonlinear multiobjective management problem is taken as example to demonstrate the technique.  相似文献   

18.
This paper considers multiobjective linear programming problems with fuzzy random variables coefficients. A new decision making model is proposed to maximize both possibility and probability, which is based on possibilistic programming and stochastic programming. An interactive algorithm is constructed to obtain a satisficing solution satisfying at least weak Pareto optimality.  相似文献   

19.
In this paper, we propose a credibilistic framework for portfolio selection problem using an expected value multiobjective model with fuzzy parameters. We consider short term return, long term return, risk and liquidity as key financial criteria. A solution procedure comprising fuzzy goal programming and fuzzy simulation based real-coded genetic algorithm is developed to solve the model. The proposed solution approach is considered advantageous particularly for the cases where the fuzzy parameters of the problem may assume any general functional form. An empirical study is included to illustrate the usefulness of the proposed model and solution approach in real-world applications of portfolio selection.  相似文献   

20.
A multiobjective binary integer programming model for R&D project portfolio selection with competing objectives is developed when problem coefficients in both objective functions and constraints are uncertain. Robust optimization is used in dealing with uncertainty while an interactive procedure is used in making tradeoffs among the multiple objectives. Robust nondominated solutions are generated by solving the linearized counterpart of the robust augmented weighted Tchebycheff programs. A decision maker’s most preferred solution is identified in the interactive robust weighted Tchebycheff procedure by progressively eliciting and incorporating the decision maker’s preference information into the solution process. An example is presented to illustrate the solution approach and performance. The developed approach can also be applied to general multiobjective mixed integer programming problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号