首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1Intr0ducti0nLetAden0tethesetofallfunctionsanalyticinA={z:Izl<1}.LetB={W:WEAandIW(z)l51}.Aisalocallyconvexlineaztop0l0gicalspacewithrespecttothetopologyofuniformconvergenceon`c0mpact8ubsetsofA-LetTh(c1,'tc.-1)={p(z):p(z)EA,Rop(z)>0,p(z)=1 clz czzz ' c.-lz"-l 4z" ',wherecl,',cn-1areforedcomplexconstants}.LetTh,.(b,,-..,b,-,)={p(z):P(z)'EAwithReP(z)>Oandp(z)=1 blz ' b.-lz"-l 4z" '-,wherebl,-'-jbu-1areffeedrealconstantsanddkarerealnumbersf0rk=n,n 1,'--}-LetTu(l1,'i'tI.-1)={…  相似文献   

2.
Let S(n, k, v) denote the number of vectors (a0,…, an?1) with nonnegative integer components that satisfy a0 + … + an ? 1 = k and Σi=0n?1iaiv (mod n). Two proofs are given for the relation S(n, k, v) = S(k, n, v). The first proof is by algebraic enumeration while the second is by combinatorial construction.  相似文献   

3.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

4.
Let M be a commutative, cancellative, atomic monoid and x a nonunit in M. We define ω(x)=n if n is the smallest positive integer with the property that whenever xa 1???a t , where each a i is an atom, there is a T?{1,2,…,t} with |T|≤n such that x∣∏kT a k . The ω-function measures how far x is from being prime in M. In this paper, we give an algorithm for computing ω(x) in any numerical monoid. Simple formulas for ω(x) are given for numerical monoids of the form 〈n,n+1,…,2n?1〉, where n≥3, and 〈n,n+1,…,2n?2〉, where n≥4. The paper then focuses on the special case of 2-generator numerical monoids. We give a formula for computing ω(x) in this case and also necessary and sufficient conditions for determining when x is an atom. Finally, we analyze the asymptotic behavior of ω(x) by computing \(\lim_{x\rightarrow \infty}\frac{\omega(x)}{x}\).  相似文献   

5.
Let Δk(x) = Δ(a1, …, ak; x) be the error term in the asymptotic formula for the summatory function of the general divisor function d(a1, …, ak; n), which is generated by ζ(a1s) … ζ(aks) (1 ≤ a1 ≤ … ≤ ak are fixed integers). Precise omega results for the mean square integral ∫1x Δk2(x) dx are given, with applications to some specific divisor problems.  相似文献   

6.
For 1 ≦ lj, let al = ?h=1q(l){alh + Mv: v = 0, 1, 2,…}, where j, M, q(l) and the alh are positive integers such that j > 1, al1 < … < alq(2)M, and let al = al ∪ {0}. Let p(n : B) be the number of partitions of n = (n1,…,nj) where, for 1 ≦ lj, the lth component of each part belongs to Bl and let p1(n : B) be the number of partitions of n into different parts where again the lth component of each part belongs to Bl. Asymptotic formulas are obtained for p(n : a), p1(n : a) where all but one nl tend to infinity much more rapidly than that nl, and asymptotic formulas are also obtained for p(n : a′), p1(n ; a′), where one nl tends to infinity much more rapidly than every other nl. These formulas contrast with those of a recent paper (Robertson and Spencer, Trans. Amer. Math. Soc., to appear) in which all the nl tend to infinity at approximately the same rate.  相似文献   

7.
Ek(x2,…, xn) is defined by Ek(a2,…, an) = 1 if and only if ∑i=2nai = k. We determine the periods of sequences generated by the shift registers with the feedback functions x1 + Ek(x2,…, xn) and x1 + Ek(x2,…, xn) + Ek+1(x2,…, xn) over the field GF(2).  相似文献   

8.
If X1,…,Xn are independent identically distributed Rd-valued random vectors with probability measure μ and empirical probability measure μn, and if a is a subset of the Borel sets on Rd, then we show that P{supAan(A)?μ(A)|≥ε} ≤ cs(a, n2)e?2n2, where c is an explicitly given constant, and s(a, n) is the maximum over all (x1,…,xn) ∈ Rdn of the number of different sets in {{x1…,xn}∩A|Aa}. The bound strengthens a result due to Vapnik and Chervonenkis.  相似文献   

9.
Let G be a finitely presented group given by its pre-abelian presentation <X1,…,Xm; Xe11ζ1,…,Xemmζ,ζm+1,…>, where ei≥0 for i = 1,…, m and ζj?G′ for j≥1. Let N be the subgroup of G generated by the normal subgroups [xeii, G] for i = 1,…, m. Then Dn+2(G)≡γn+2(G) (modNG′) for all n≥0, where G” is the second commutator subgroup of Gn+2(G) is the (n+2)th term of the lower central series of G and Dn+2(G) = G∩(1+△n+2(G)) is the (n+2)th dimension subgroup of G.  相似文献   

10.
The functional equation $$f(x)={1\over 2}\int^{x+1}_{x-1}f(t)\ dt\ \ \ {\rm for}\ \ \ x\ \in\ {\rm R}$$ has the linear functions ?(x) = a + bx (a, b ∈ ?) as trivial solutions. It is shown that there are two kinds of nontrivial solutions, (i) ?(x) = eλi x (i = 1, 2, …), where the λi∈ ? are the fixed points of the map z ? sinh z, and (ii) C-solutions ? for which the values in the interval [?1,1] can be prescribed arbitrarily, but with the provision that ?(j)(? 1) = ?(j)(0) = ?(j)(1) = 0 for all j = 0, 1, 2 …  相似文献   

11.
Let Xt be the Brownian motion in Rd. The random set Γ = {(t1,…, tn, z): Xtl = ··· = Xtn = z} in Rd + n is empty a.s. except in the following cases: (a) n = 1, d = 1, 2,…; (b) d = 2, n = 2, 3,…; (c) d = 3, n = 2. In each of these cases, a family of random measures Mλ concentrated on Γ is constructed (λ takes values in a certain class of measures on Rd). Measures Mλ characterize the time-space location of self-intersections for Brownian paths. If n = d = 1, then Mλ(dt, dz) = λ(dz) Nz(dt) where N2 is the local time at z. In the case n = 2, the set Γ can be identified with the set of Brownian loops. The measure Mλ “explodes” on the diagonal {t1 = t2} and, to study small loops, a random distribution which regularizes Mλ is constructed.  相似文献   

12.
Let T(R) denote the set of all tournaments with score vector R = (r1, r2,…, rn). R. A. Brualdi and Li Qiao (“Proceedings of the Silver Jubilee Conference in Combinatorics at Waterloo,” in press) conjectured that if R is strong with r1r2 ≤ … ≤ rn, then |T(R)| ≥ 2n?2 with equality if and only if R = (1, 1, 2,…, n ? 3, n ? 2, n ? 2). In this paper their conjecture is proved, and this result is used to establish a lower bound on the cardinality of T(R) for every R.  相似文献   

13.
Let R be a prime ring of characteristic different from 2, with Utumi quotient ring U and extended centroid C, δ a nonzero derivation of R, G a nonzero generalized derivation of R, and f(x 1, …, x n ) a noncentral multilinear polynomial over C. If δ(G(f(r 1, …, r n ))f(r 1, …, r n )) = 0 for all r 1, …, r n R, then f(x 1, …, x n )2 is central-valued on R. Moreover there exists aU such that G(x) = ax for all xR and δ is an inner derivation of R such that δ(a) = 0.  相似文献   

14.
Let T1,...,λ n ) be the lifetime of a parallel system consisting of exponential components with hazard rates λ1,...,λ n , respectively. For systems with only two components, Dykstra et. al. (1997) showed that if (λ1, λ2) majorizes (γ1, γ2), then, T1, λ2) is larger than T1, γ2) in likelihood ratio order. In this paper, we extend this theorem to general parallel systems. We introduce a new partial order, the so-called d-larger order, and show that if (λ1,...,λ n ) is d-larger than (γ1,...,γ n ), then T1,...,λ n ) is larger than T1,...,γ n ) in likelihood ratio order.  相似文献   

15.
Put Zn = {1, 2,…, n} and let π denote an arbitrary permutation of Zn. Problem I. Let π = (π(1), π(2), …, π(n)). π has an up, down, or fixed point at a according as a < π(a), a > π(a), or a = π(a). Let A(r, s, t) be the number of πZn with r ups, s downs, and t fixed points. Problem II. Consider the triple π?1(a), a, π(a). Let R denote an up and F a down of π and let B(n, r, s) denote the number of πZn with r occurrences of π?1(a)RaRπ(a) and s occurrences of π?1(a)FaFπ(a). Generating functions are obtained for each enumerant as well as for a refinement of the second. In each case use is made of the cycle structure of permutations.  相似文献   

16.
It is shown how existence questions for general multiparameter eigenvalue problems can be treated quite simply using degree theory. The equations to be solved are Wn(λ)xn = 0 ≠ xn, n = 1, 2,…, k, where λ ? Rk and each Wn(λ) is a self-adjoint linear operator on a Hilbert space Hn. The Wn, which may be unbounded, depend continuously on λ in a suitable sense. A coercivity condition for large ∥ λ ∥ is used, and is shown to be equivalent, in the “linear” case, to a standard determinantal definiteness condition.  相似文献   

17.
The following result is proved: If A and B are distinct n × n doubly stochastic matrices, then there exists a permutation σ of {1, 2,…, n} such that ∏iaiσ(i) > ∏ibiσ(i).  相似文献   

18.
Let Sn,n = 1, 2, …, denote the partial sums of integrable random variables. No assumptions about independence are made. Conditions for the finiteness of the moments of the first passage times N(c) = min {n: Sn>ca(n)}, where c ≥ 0and a(y) is a positive continuous function on [0, ∞), such that a(y) = o(y)as y → ∞, are given. With the further assumption that a(y) = yP,0 ≤ p < 1, a law of large numbers and the asymptotic behaviour of the moments when c → ∞ are obtained. The corresponding stopped sums are also studied.  相似文献   

19.
Let ∏1,…,∏k denote k independent populations, where a random observation from population ∏ i has a uniform distribution over the interval (0,θ i ) and θ i is a realization of a random variable having an unknown prior distribution G i . Population ∏ i is said to be a good population if θ i ≥θ0, where θ0 is a given, positive number. This paper provides a sequence of empirical Bayes procedures for selecting the good populationsamong ∏1,…,∏ k . It is shown that these procedures are asymptotically optimal and that the order of associated convergence rates is O(n-r/4) for some r, 0<r<2, where n is the number of accumulated past observations

at hand  相似文献   

20.
《Journal of Algebra》1999,211(2):562-577
LetRbe a Krull ring with quotient fieldKanda1,…,aninR. If and only if theaiare pairwise incongruent mod every height 1 prime ideal of infinite index inRdoes there exist for all valuesb1,…,bninRan interpolating integer-valued polynomial, i.e., anf  K[x] withf(ai) = biandf(R)  R.IfSis an infinite subring of a discrete valuation ringRvwith quotient fieldKanda1,…,aninSare pairwise incongruent mod allMkv  Sof infinite index inS, we also determine the minimald(depending on the distribution of theaiamong residue classes of the idealsMkv  S) such that for allb1,…,bn  Rvthere exists a polynomialf  K[x] of degree at mostdwithf(ai) = biandf(S)  Rv.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号