首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The partial oxidation of 3- and 4-methylpyridines on V2O5 and vanadium oxide catalysts doped with TiO2, Al2O3, and ZrO2 was studied. The catalytic activities of the studied catalysts were correlated with the calculated proton affinities of the vanadyl oxygen. A possible mechanism of the surface stages of the partial oxidation of 3- and 4-methylpyridines on the vanadium oxide catalysts was discussed.  相似文献   

2.
Within the framework of the density functional theory (DFT), the electronic structure of monooxodioxovanadium functional groups in tetrahedral coordination, which model the active centers (ACs) of fine supported catalysts V2O5/SiO2 and V2O5/TiO2, has been analyzed. The optimal structures of three ACs as possible models of monomeric and polymeric oxovanadium forms on the carriers with low vanadium content were determined. The modified DFT method involving the time dependence of Kohn-Sham equation (TDDFT) was used for the adopted AC models to calculate the energies of the excited states, and optical spectra of the absorption in 25000–60000 cm?1 region were reconstructed on their base. The spectrum in this region is due to O → V charge transfer. The features of electronic spectra with the charge transfer for V2O5/SiO2 and V2O5/TiO2 catalysts and the vibrational spectra of three AC models corresponding to the monomeric and dimeric oxovanadium forms of the supported catalysts V2O5/SiO2 and V2O5/TiO2 were defined. The detailed interpretation of normal vibration frequencies is given. The frequencies typical of the monomeric and dimeric oxovanadium forms on the carrier surface were identified.  相似文献   

3.
The surface properties of supported gallium oxide catalysts prepared by impregnation of various supports (γ-Al2O3, SiO2, TiO2, ZrO2) were investigated by adsorption microcalorimetry, using ammonia and water as probe molecules. In the case of acidic supports (γ-Al2O3, ZrO2, TiO2), the acidic character of supported gallium catalysts always decreased in comparison with gallium-free supports; on very weakly acidic SiO2, new acidic centers were created when depositing Ga2O3. The addition of gallium oxide decreased the hydrophilic properties of alumina, titania and zirconia, but increased the amount of water adsorbed on silica. The catalytic performances in the selective catalytic reduction of NO by C2H4 in excess oxygenwere in the order Ga/Al2O3>Ga/TiO2>Ga/ZrO2>>Ga/SiO2. This order is more related to the quality of the dispersion of Ga2O3 on the support than to the global acidity of the solids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The acid-base character of vanadium pentoxide, V2O5/SiO2 and V2O5/γ-Al2O3 catalysts has been investigated by adsorption of ammonia and sulphur dioxide using microcalorimetry. By depositing vanadium oxide on silica; new surface sites are formed which present more acid strength than bulk vanadium pentoxide and pure silica. Alumina-supported vanadium catalysts can be regarded as acidic monolayers VOx. Sulphur dioxide was found to be selective for uncovered alumina.  相似文献   

5.
Zou  H.  Li  M.  Shen  J.  Auroux  A. 《Journal of Thermal Analysis and Calorimetry》2003,72(1):209-221
The surface acidity of SiO2, γ-Al2O3 and TiO2 supported vanadia catalysts has been studied by the microcalorimetry and infrared spectroscopy using ammonia as the probe molecule. The acidity in terms of nature, number and strength was correlated with surface structures of vanadia species in the catalysts, characterized by X-ray diffraction and UV-Vis spectroscopy. It was found that the dispersion and surface structure of vanadia species depend on the nature of supports and loading and affect strongly the surface acidity. On SiO2, vanadium species is usually in the form of polycrystalline V2O5 even for the catalyst with low loading (3%) and these V2O5 crystallites exhibit similar amount of Brönsted and Lewis acid sites. The 25%V2O5/SiO2 catalyst possesses substantial amount of V2O5 crystallites on the surface with the initial heat of 105 kJ mol-1 and coverage of about 600 mmol g-1 for ammonia adsorption. Vanadia can be well dispersed on g-Al2O3and TiO2 to form isolated tetrahedral species and polymeric two-dimensional network. Addition of vanadia on γ-Al2O3 results in the change of acidity from that associated with g-Al2O3 (mainly Lewis sites) to that associated with vanadia (mainly Brönsted sites) and leads to the decreased acid strength. The 3%V2O5/TiO2 catalyst may have the vanadia structure of incomplete polymeric two-dimensional network that possesses the Ti-O-V-OH groups at edges showing strong Brönsted acidity with the initial heat of about 140 kJ mol-1 for ammonia adsorption. On the other hand, the 10%V2O5/TiO2 catalyst may have well defined polymeric two-dimensional vanadia network, possessing V-O-V-OH groups that exhibit rather weak Brönsted acidity with the heat of 90 kJ mol-1 for NH3 adsorption. V2O5 crystallites are formed on the 25%V2O5/TiO2 catalyst, which exhibit the acid properties similar to those for 25%V2O5 on SiO2 and γ-Al2O3.  相似文献   

6.
Copper or iron supported on commercially available oxides, such as γ-Al2O3, TiO2 (anatase) and monoclinic tetragonal ZrO2 (mt-ZrO2) were tested as catalysts for selective catalytic oxidation of ammonia into nitrogen and water vapour (NH3-SCO) in the low temperature range. Different commercial oxides were used in this study to determine the influence of the specific surface area, acidic nature of the support and crystalline phases as well as of the type of species and aggregation state of transition metals on the catalytic performance in selective ammonia oxidation. Copper modified oxide supports were found to be more active and selective to nitrogen than catalysts impregnated with iron. Activities of both transition metal modified samples decreased in the following order: mt-ZrO2, TiO2 (anatase), γ-Al2O3. Quantitative total ammonia conversion was achieved with the Cu/ZrO2 catalytic system at 400°C. Characterisation techniques, e.g. H2-temperature programmed reduction, UV-VIS-diffuse reflectance spectroscopy, suggest that easily reducible copper oxide species are important in achieving high catalytic performances at low temperatures.  相似文献   

7.
研究了不同载体负载的Pt-Ni双金属和单金属催化剂上乙醇重整和1,3-丁二烯加氢反应性能, 以考察氧化物载体对双金属结构和催化活性的影响. 所用的氧化物载体包括γ-Al2O3, SiO2, TiO2, CeO2以及高比表面积(HSA)和低比表面积(LSA)ZrO2. 采用共浸渍法制备催化剂, 用CO化学吸附、透射电镜和扩展X射线吸收精细结构光谱进行催化剂表征, 采用傅里叶变换红外间歇反应器进行化学反应评价. 对于乙醇重整反应, Pt-Ni双金属催化剂优于单金属催化剂, Pt-Ni双金属催化剂活性顺序为TiO2 > SiO2 > γ-Al2O3 ≈ LSA-ZrO2 > CeO2 > HSA-ZrO2. 对于1,3-丁二烯加氢反应, 在SiO2, TiO2和HSA-ZrO2载体上双金属催化剂优于单金属催化剂, Pt-Ni双金属催化剂活性顺序为SiO2 > CeO2 > γ-Al2O3 > LSA-ZrO2 > HSA-ZrO2 ≈ TiO2.  相似文献   

8.
UV-Raman spectroscopy was used to study the molecular structures of TiO2 or ZrO2-supported vanadium oxide catalysts. The real time reaction status of soot combustion over these catalysts was detected by in-situ UV-Raman spectroscopy. The results indicate that TiO2 undergoes a crystalline phase transformation from anatase to rutile phase with the increasing of reaction temperature. However, no obvious phase transformation process is observed for ZrO2 support. The structures of supported vanadium oxides also depend on the V loading. The vanadium oxide species supported on TiO2 or ZrO2 attain monolayer saturation when V loading is equal to 4 (4 is the number of V atoms per 100 support metal ions). Interestingly, this loading ratio (V4/TiO2 and V4/ZrO2) gave the best catalytic activities for soot combustion reaction on both supports (TiO2 and ZrO2). The formation of surface oxygen complexes (SOC) is verified by in-situ UV Raman spectroscopy and the SOC mainly exist as carboxyl groups during soot combustion. The presence of NO in the reaction gas stream can promote the production of SOC.  相似文献   

9.
The results of the application of the stoichiographic method of differential dissolution (DD) in the determination of the chemical composition of vanadium-containing catalysts are presented. In the studied catalyst series, amounts of vanadium were deposited onto TiO2, SiO2, Al2O3, ZrO2, and Nb2O5. The catalysts were prepared by the impregnation method or by the spray drying method and thermally treated at different temperatures. The DD method was used for the precise correction of the phase composition of the V2O5/TiO2 catalyst samples in order to determine the nature of the active component of these catalysts and obtain the correct information on their structure using the NMR method.  相似文献   

10.
We prepared Pd catalysts supported on various metal oxides, viz. γ-Al2O3, α-Al2O3, SiO2–Al2O3, SiO2, CeO2 and TiO2 by an incipient wetness method and applied them to propane combustion. Several techniques: N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPO) were employed to characterize the catalysts. Pd/SiO2–Al2O3 showed the least catalytic activity at high temperatures among Pd catalysts supported on irreducible metal oxides, viz. SiO2, Al2O3 and SiO2–Al2O3. Pd/γ-Al2O3 was much superior for this reaction to Pd/α-Al2O3. The Pd catalyst supported on reducible metal oxides (CeO2 and TiO2) with a less specific surface area showed the higher catalytic activity compared with that supported on reducible metal oxides with a higher specific surface area, even though the former had a less Pd dispersion than the latter. In the case of Pd/SiO2–Al2O3, the initially reduced Pd catalyst was superior to the fully oxidized one. The oxidation of metallic Pd occurred in the presence of O2 with increasing reaction temperature, which resulted in the change in the catalytic activity.  相似文献   

11.
We prepared Pt catalysts supported on various metal oxides, viz., ZrO2, CeO2, TiO2, yttria-stabilized zirconia (YSZ), SiO2, SiO2–Al2O3, and γ-Al2O3, using an incipient wetness method and applied them to propane combustion. In the cases of ZrO2-, CeO2-, and TiO2-supported Pt catalysts, supports with different surface areas were also used. The Pt dispersion in Pt catalysts supported on metal oxides increased with increasing surface area of the support for the same metal oxide. Pt catalysts on supports with lower surface areas (ZrO2, CeO2, and TiO2) showed higher catalytic activities for propane combustion than did Pt catalysts on supports with higher surface areas. The catalytic activity decreased in the following order: Pt/ZrO2 (2) > Pt/CeO2 (9) > Pt/TiO2 (1) = Pt/SiO2 (350) > Pt/ZrO2 (18) = Pt/YSZ > Pt/TiO2 (330) > Pt/SiO2–Al2O3 (350) > Pt/ZrO2 (73) > Pt/γ-Al2O3 (180) > Pt/CeO2 (160). The catalytic activity is inversely proportional to the amount of O2 chemisorbed up to the reaction temperature. It can be concluded that metallic Pt is essential for propane combustion and is maintained for the Pt catalysts with large Pt metal particles, which can be prepared by using a support with a low surface area.  相似文献   

12.
The vapour phase synthesis of isobutyraldehyde from methanol and ethanol in one step was investigated over titania-silica, titania-alumina, titania-zirconia, titania-silica-zirconia, and magnesia supported vanadium oxide catalysts at 623 K and under normal atmospheric pressure. Among various catalysts the titania-silica binary oxide supported vanadia provided higher yields than the other single or mixed oxide supported catalysts. The high conversion and product selectivity of V2O5/TiO2-SiO2 catalyst (20 wt% V2O5) was related to the better dispersion of vanadium oxide over titania-silica mixed oxide support in addition to other acid-base and redox characteristics. A reaction path for the formation of isobutyraldehyde from methanol and ethanol mixtures over these catalysts was described.  相似文献   

13.
This work describes a modified sol-gel method for the preparation of V2O5/TiO2 catalysts. The samples have been characterized by N2 adsorption at 77 K, X-ray Diffractometry (XRD), Scanning Electronic Microscopy (SEM/EDX) and Fourier Transform Infrared Spectroscopy (FT-IR). The surface area increases with the vanadia loading from 24 m2 g–1 for pure TiO2 to 87 m2 g–1 for 9 wt% of V2O5. The rutile form is predominant for pure TiO2 but becomes enriched with anatase phase when vanadia loading is increased. No crystalline V2O5 phase was observed in the diffractograms of the catalysts. Analysis by SEM showed heterogeneous granulation of particles with high vanadium dispersion. Two species of surface vanadium were observed by FT-IR spectroscopy: a monomeric vanadyl and polymeric vanadates. The vanadyl/vanadate ratio remains practically constant. Ethanol oxidation was used as a catalytic test in a temperature range from 350 to 560 K. The catalytic activity starts around 380 K. For the sample with 9 wt% of vanadia, the conversion of ethanol into acetaldehyde as the main product was approximately 90% at 473 K.  相似文献   

14.
Modification of V2O5 with Ti, Sn, Zr, Nb, and Al oxides improves the activity and selectivity of the vanadium oxide catalyst in vapor-phase oxidation of β-picoline to give nicotinic acid. It is shown that the conversion of β-picoline and the yield of nicotinic acid on two-component V2O5-TiO2, V2O5-SnO2, V2O5-ZtrO2, V2O5-Nb2O5, and V2O5-Al2O3 catalysts may be several times those on the V2O5 catalyst. It was found that, on passing from V2O5 to double-component vanadium-containing catalysts, the proton affinity of active oxygen bonded to vanadium, calculated by the quantum-chemical method, grows simultaneously with the increase in the activity of the catalysts in the oxidation reaction.  相似文献   

15.
蔡景轩  傅玉川  孙清  贾敏慧  沈俭一 《催化学报》2013,34(11):2110-2117
研究了酸性助剂对TiO2纳米管(TNT)负载的V2O5催化剂(V2O5/TNT)性能的影响, 发现经硫酸、磷酸或磷钨酸处理后, TNT的结构稳定, 但表面酸性和氧化-还原性发生了变化, 从而改变了甲醇选择氧化为甲缩醛的催化性能. 实验结果表明, V2O5/TNT催化剂经硫酸修饰和673 K焙烧, 其甲缩醛选择性显著提高, 且维持了较高的甲醇转化率. 催化剂表征表明, 高温焙烧促进了硫酸根与钒物种之间的强相互作用, 从而提高了催化剂的表面酸性而没有降低钒的氧化-还原性. 磷酸和磷钨酸修饰虽然也提高了V2O5/TNT催化剂的表面酸性, 但降低了其中钒氧化物的氧化-还原能力, 反而降低了催化剂的活性.  相似文献   

16.
UV-Raman spectroscopy was used to study the molecular structures of TiO2 or ZrO2-supported vanadium oxide catalysts. The real time reaction status of soot combustion over these catalysts was detected by in-situ UV-Raman spectroscopy. The results indicate that TiO2 undergoes a crystalline phase transformation from anatase to rutile phase with the increasing of reaction temperature. However, no obvious phase transformation process is observed for ZrO2 support. The structures of supported vanadium oxides also depend on the V loading. The vanadium oxide species supported on TiO2 or ZrO2 attain monolayer saturation when V loading is equal to 4 (4 is the number of V atoms per 100 support metal ions). Interestingly, this loading ratio (V4/TiO2 and V4/ZrO2) gave the best catalytic activities for soot combustion reaction on both supports (TiO2 and ZrO2). The formation of surface oxygen complexes (SOC) is verified by in-situ UV Raman spectroscopy and the SOC mainly exist as carboxyl groups during soot combustion. The presence of NO in the reaction gas stream can promote the production of SOC. Supported by the National Natural Science Foundation of China (Grant Nos. 20473053, 20773163 and 20525621), the Beijing Natural Science Foundation (Grant No. 2062020), and the 863 Program of China (Grant No. 2006AA06Z346)  相似文献   

17.
Co2C-based catalysts with SiO2, γ-Al2O3, and carbon nanotubes (CNTs) as support materials were prepared and evaluated for the Fischer-Tropsch to olefin (FTO) reaction. The combination of catalytic performance and structure characterization indicates that the cobalt-support interaction has a great influence on the Co2C morphology and catalytic performance. The CNT support facilitates the formation of a CoMn composite oxide during calcination, and Co2C nanoprisms were observed in the spent catalysts, resulting in a product distribution that greatly deviates from the classical Anderson-Schulz-Flory (ASF) distribution, where only 2.4 C% methane was generated. The Co3O4 phase for SiO2- and γ-Al2O3-supported catalysts was observed in the calcined sample. After reduction, CoO, MnO, and low-valence CoMn composite oxide were generated in the γ-Al2O3-supported sample, and both Co2C nanospheres and nanoprisms were identified in the corresponding spent catalyst. However, only separated phases of CoO and MnO were found in the reduced sample supported by SiO2, and Co2C nanospheres were detected in the spent catalyst without the evidence of any Co2C nanoprisms. The Co2C nanospheres led to a relatively high methane selectivity of 5.8 C% and 12.0 C% of the γ-Al2O3- and SiO2-supported catalysts, respectively. These results suggest that a relatively weak cobalt-support interaction is necessary for the formation of the CoMn composite oxide during calcination, which benefits the formation of Co2C nanoprisms with promising catalytic performance for the sustainable production of olefins via syngas.  相似文献   

18.
A series of TiO2?CZrO2 supported V2O5 catalysts with vanadia loadings ranging from 4 to 12 wt% were synthesized by a wet impregnation technique and subjected to various thermal treatments at temperatures ranging from 773 to 1,073?K to understand the dispersion and thermal stability of the catalysts. The prepared catalysts were characterized by X-ray powder diffraction (XRD), BET surface area, oxygen uptake, and X-ray photoelectron spectroscopy (XPS) techniques. XRD results of 773?K calcined samples conferred an amorphous nature of the mixed oxide support and a highly dispersed form of vanadium oxide. Oxygen uptake measurements supported the formation of a monolayer of vanadium oxide over the thermally stable TiO2?CZrO2 support. The O 1s, Ti 2p, Zr 3d, and V 2p core level photoelectron peaks of TiO2?CZrO2 and V2O5/TiO2?CZrO2 catalysts are sensitive to the calcination temperature. No significant changes in the oxidation states of Ti4+ and Zr4+ were noted with increasing thermal treatments. Vanadium oxide stabilized as V4+ at lower temperatures, and the presence of V5+ is observed at 1,073?K. The synthesized catalysts were evaluated for selective oxidation of o-xylene under normal atmospheric pressure in the temperature range of 600?C708?K. The TiO2?CZrO2 support exhibits very less conversion of o-xylene, while 12 wt% V2O5 loaded sample exhibited a good conversion and a high product selectivity towards the desired product, phthalic anhydride.  相似文献   

19.
Raman spectroscopy and Electron Paramagnetic Resonance (EPR) studies were performed on a series of V2O5/TiO2 catalysts prepared by a modified sol-gel method in order to identify the vanadium species. Two species of surface vanadium were identified by Raman measurements, monomeric vanadyls and polymeric vanadates. Monomeric vanadyls are characterized by a narrow Raman band at 1030 cm–1 and polymeric vanadates by two broad bands in the region from 900 to 960 cm–1 and 770 to 850 cm–1. The Raman spectra do not exhibit characteristic peaks of crystalline V2O5. These results are in agreement with those of X-ray Diffractometry (XRD) and Fourier Transform Infrared (FT-IR) previously reported (C.B. Rodella et al., J. Sol-Gel Sci. Techn., submitted). At least three families of V4+ ions were identified by EPR investigations. The analysis of the EPR spectra suggests that isolated V4+ ions are located in sites with octahedral symmetry substituting for Ti4+ ions in the rutile structure. Magnetically interacting V4+ ions are also present as pairs or clusters giving rise to a broad and structureless EPR line. At higher concentration of V2O5, a partial oxidation of V4+ to V5+ is apparent from the EPR results.  相似文献   

20.
Vanadium oxide catalysts of the monolayer type have been prepared by means of chemisorption of vanadate(V)-anions from aqueous solutions and by chemisorption of gaseous V2O3(OH)4. Using Al2O3, Cr2O3, TiO2, CeO2 and ZrO2, catalysts with an approximately complete monomolecular layer of vanadium(V) oxide on the carrier oxides can be prepared, if temperature is not too high. Divalent metal oxides like CdO and ZnO may already form threedimensional surface vanadates at moderate temperature. The thermal stability of a monolayer catalyst is related to the parameter z/a, i. e. the ratio of the carrier cation charge to the sum of ionic radii of carrier cation and oxide anion. Thus, monolayer catalysts will be thermally stable only under the condition that z/a is not too high (aggregated catalyst) nor too small (ternary compound formation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号