首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Explicit and asymptotic solutions are presented to the recurrence M(1) = g(1), M(n + 1) = g(n + 1) + min1 ? t ? n(αM(t) + βM(n + 1 ? t)) for the cases (1) α + β < 1, log2αlog2β is rational, and g(n) = δnI. (2) α + β > 1, min(α, β) > 1, log2αlog2β is rational, and (a) g(n) = δn1, (b) g(n) = 1. The general form of this recurrence was studied extensively by Fredman and Knuth [J. Math. Anal. Appl.48 (1974), 534–559], who showed, without actually solving the recurrence, that in the above cases M(n) = Ω(n1 + 1γ), where γ is defined by α + β = 1, and that limn → ∞M(n)n1 + γ does not exist. Using similar techniques, the recurrence M(1) = g(1), M(n + 1) = g(n + 1) + max1 ? t ? n(αM(t) + βM(n + 1 ? t)) is also investigated for the special case α = β < 1 and g(n) = 1 if n is odd = 0 if n is even.  相似文献   

2.
Best upper and lower bounds, as functions of n, are obtained for the quantities β2(G)+β2(G?) and α2(G)+α2(G?), where β2(G) denotes the total matching number and α2(G) the total covering number of any graph G with n vertices and with complementry graph ?.The best upper bound is obtained also for α2(G)+β2(G), when G is a connected graph.  相似文献   

3.
The graph G has star number n if any n vertices of G belong to a subgraph which is a star. Let f(n, k) be the smallest number m such that the complete graph on m vertices can be factorized into k factors with star number n. In the present paper we prove that c1nk ≤ f(n, k) < c2nk.  相似文献   

4.
We are interested in the parallel computation of a linear mapping of n real variables by a network of computers with restricted means of communication between them and without any common memory. Let Mn×n(R) denote the algebra of n×n real matrices, and let G be the graph associated with a binary, reflexive and symmetric relation R over {1,2, …,n}. We define
AR = {A?Mn×n(R):aij≠ 0 implies iRj}
A matrix M∈Mn×n(R) is said to be realizable on G if it can be expressed as a product of elements of AR. Therefore, every matrix of Mn×n(R) is realizable on G if and only if AR generates Mn×n(R). We show that AR generates M n×n(R) if and only if G is connected.  相似文献   

5.
The expected number of times of updating the values of tentative distances assigned to nodes in Dijkstra's algorithm for the single-source shortest path problem is proved to be at most nloge(2mn), where m and n are the number of edges and nodes respectively of a given graph. The assumption on probability distributions is as general as Spira's for the all-pair shortest path problem. As a corollary of this result, an efficient method for implementing the algorithm by means of a [loge(2mn)-ary heap is presented, which has the upper bound of m + 2nlog2nloge(2mn)log2loge(2mn) binary comparisons in average on the decision tree model.  相似文献   

6.
In this paper some recursion formulas and asymptotic properties are derived for the numbers, denoted by N(p, q), of irreducible coverings by edges of the vertices of complete bipartite (labeled) graphs Kp,q. The problem of determining numbers N(p, q) has been raised by I. Tomescu (dans “Logique, Automatique, Informatique,” pp. 269–423, Ed. Acad. R.S.R., Bucharest, 1971). A result concerning the asymptotic behavior of the number of irreducible coverings by cliques of q-partite complete graphs is obtained and it is proved that limn→∞ I(n)1n2 = 3112, limn→∞ (log M(n))1n = 313, and limn→∞C(n)1n(nln n) = 1e, where I(n) and M(n) are the maximal numbers of irreducible coverings, respectively, coverings by cliques of the vertices of an n-vertex graph, and C(n) is the maximal number of minimal colorings of an n-vertex graph. It is also shown that maximal number of irreducible coverings by n ? 2 cliques of the vertices of an n-vertex graph (n ≥ 4) is equal to 2n?2 ? 2 and this number of coverings is attained only for K2,n?2 and the value of limn→∞ I(n, n ? k)1n is obtained, where I(n, n ? k) denotes the maximal number of irreducible coverings of an n-vertex graph by n ? k cliques.  相似文献   

7.
Letting G(n) denote the number of nonisomorphic groups of order n, it is shown that for square-free n, G(n) ≤ ?(n) and G(n) ≤ (log n)c on a set of positive density. Letting Fk(x) denote the number of nx for which G(n) = k, it is shown that F2(x) = O(x(log4x)(log3x)2), where logrx denotes the r-fold iterated logarithm.  相似文献   

8.
9.
An elementary proof is given of the author's transformation formula for the Lambert series Gp(x) = Σn?1 n?pxn(1?xn) relating Gp(e2πiτ) to Gp(e2πiAτ), where p > 1 is an odd integer and Aτ = (aτ + b)(cτ + d) is a general modular substitution. The method extends Sczech's argument for treating Dedekind's function log η(τ) = πiτ12 ? G1(e2πiτ), and uses Carlitz's formula expressing generalized Dedekind sums in terms of Eulerian functions.  相似文献   

10.
Properties of the graph G(Ωn) of the polytope Ωn of all n × n nonnegative doubly stochastic matrices are studied. If F is a face of Ωn which is not a k-dimensional rectangular parallelotope for k ≥ 2, then G(F) is Hamilton connected. Prime factor decompositions of the graphs of faces of Ωn relative to Cartesian product are investigated. In particular, if F is a face of Ωn, then the number of prime graphs in any prime factor decomposition of G(F) equals the number of connected components of the neighborhood of any vertex of G(F). Distance properties of the graphs of faces of Ωn are obtained. Faces F of Ωn for which G(F) is a clique of G(Ωn) are investigated.  相似文献   

11.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

12.
The toroidal thickness t1(G) of a graph G is the minimum value of k for which G is the edge-union of k graphs each embeddable on a torus. It is shown that t1(K4(n)) = [12(n + 1)].  相似文献   

13.
Let H be a complex Hilbert space, and let Gi, i = 1, 2, be closed and orthogonal subspaces of the product space H × H. The subspace G = G1G2 is called a (graph) perturbation. We give conditions for invariance of regular operators (R.O.) under graph perturbations: When is the perturbation of a R.O. again a R.O.? If N is a Hilbert space we consider R.O. (i.e., densely defined and closed operators T) in H=L(N) such that G(T)=G(S)⊕VH(M, where G denotes the graph, S is a decomposable operator in H, V a decomposable partial isometry such that the initial space of V(t) is equal to M a.e. t, and finally H(M) is the Hardy space of analytic L2 vector functions with values in M ? N × N. Such operators T commute with the bilateral shift U; but, unless M = 0, T does not commute with U1. Conversely, this is a canonical model for all R.O. with said commutativity properties. Moreover, the model is unique when T is given, and M = G(w) where w is a partial isometry in N. The detailed structure of the model is analyzed in the special case where dim N = dim M = 1. We relate the problem to a condition of Szeg? by showing that T is a R.O. iff0log ¦ V2(t)¦ dt = ?∞, where V = (V1, V2) is the partial isometry in the special case of dimension one. Szeg?'s conditions enters in a different way in the analysis of the case M = N × N, as well as in the spectral analysis of T. Our results provide an answer to a commutativity problem posed by Fuglede. If T is an arbitrary densely defined operator, and A?B(H) is normal, we prove two theorems stating conditions for the implication A T ? A1T. These conditions cannot generally be relaxed.  相似文献   

14.
It is shown that if G is a graph of order p ≥ 2 such that deg u + deg vp ? 1 for all pairs u, v of nonadjacent vertices, then the edge-connectivity of G equals the minimum degree of G. Furthermore, if deg u + deg vp for all pairs u, v of nonadjacent vertices, then either p is even and G is isomorphic to Kp2 × K2 or every minimum cutset of edges of G consists of the collection of edges incident with a vertex of least degree.  相似文献   

15.
16.
An (n, j) linear forest L is the disjoint union of nontrivial paths, such that j of the paths have an odd number of vertices and the union has n vertices. For L, an (n1.j1) linear forest and l2 an (n.j1) linear forest, we show that
r(L1,L2) = max{n1 ·(n2?j2)/2 ? 1, n2 + (n1 ? j1)/2 ? 1}.
This answers in the affirmative a conjecture of Burr and Roberts.  相似文献   

17.
Given k directed graphs G1,…,Gk the Ramsey number R(G1,…, Gk) is the smallest integer n such that for any partition (U1,…,Uk) of the arcs of the complete symmetric directed graph Kn, there exists an integer i such that the partial graph generated by U1 contains G1 as a subgraph. In the article we give a necessary and sufficient condition for the existence of Ramsey numbers, and, when they exist an upper bound function. We also give exact values for some classes of graphs. Our main result is: R(Pn,….Pnk-1, G) = n1…nk-1 (p-1) + 1, where G is a hamltonian directed graph with p vertices and Pni denotes the directed path of length nt  相似文献   

18.
For a(1) ? a(2) ? ··· ? a(n) ? 0, b(1) ? b(2) ? ··· ? b(n) ? 0, the ordered values of ai, bi, i = 1, 2,…, n, m fixed, m ? n, and p ? 1 it is shown that
1naibi ? 1map(i)1p1m?k?1 bq(i)+bq[m?k](k+1)qp1q
where 1p + 1q = 1, b[j] = b(j) + b(j + 1) + ··· + b(n), and k is the integer such that b(m ? k ? 1) ? b[m ? k](k + 1) and b(m ? k) < b[m ? k + 1]k. The inequality is shown to be sharp. When p < 1 and a(i)'s are in increasing order then the inequality is reversed.  相似文献   

19.
For any tournament T on n vertices, let h(T) denote the maximum number of edges in the intersection of T with a transitive tournament on the same vertex set. Sharpening a previous result of Spencer, it is proved that, if Tn denotes the random tournament on n vertices, then, P(h(Tn) ≤ 12(2n) + 1.73n32) → 1 as n → ∞.  相似文献   

20.
Let G be a group and g1,…, gt a set of generators. There are approximately (2t ? 1)n reduced words in g1,…, gt, of length ?n. Let \?ggn be the number of those which represent 1G. We show that γ = limn → ∞(\?ggn)1n exists. Clearly 1 ? γ ? 2t ? 1. η = (log γ)(log(2t ? 1)) is the cogrowth. 0 ? η ? 1. In fact η ∈ {0} ∪ (12, 1¦. The entropic dimension of G is shown to be 1 ? η. It is then proved that d(G) = 1 if and only if G is free on g1,…, gt and d(G) = 0 if and only if G is amenable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号