首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The short-time polymerization of isoprene under the action of a TiCl4/MgCl2?i-Bu3Al heterogeneous catalyst has been investigated. Pulse mixing of the catalyst and monomer in a cylindrical tubular reactor with a certain length followed by ethanol injection has made it possible to carry out polymerization for 0.1?0.7 s. In the first 0.3 s, when there is a considerable rise in the activity of the catalyst, living polymerization of isoprene takes place. In this period, polyisoprene has up to 95% trans-1,4 units. Extending the polymerization time to 0.7 s diminishes the average molar mass of polyisoprene, broadens its molar mass distribution, and decreases the concentration of trans-1,4 units to 83%. The data of this study have been analyzed on the basis of the kinetic continuity of the polymer chain initiation and growth.  相似文献   

2.
We describe regioselective synthesis of pyrazolo[3,4-b]quinoline derivatives by multicomponent reaction of dimedone, 5-aminopyrazolone, and aromatic aldehydes in presence of H3PW12O40 as catalyst. When this multicomponent reaction was investigated without catalyst under reflux conditions, a mixture of products was obtained, while the reaction successfully proceeded to formation of pyrazolo[3,4-b]quinoline in presence of H3PW12O40. Good product yield, short experimental time, and low-cost catalyst provide convenient synthesis for formation of pyrazolo[3,4-b]quinoline pharmacological compounds.  相似文献   

3.
Minimum energy pathways of propane oxidative dehydrogenation to propene and propanol on supported vanadium oxide catalyst VO x /TiO2 were studied by periodic discrete Fourier transform (DFT) using a surface oxygen radical as the active site. The propene formation pathway was shown to consist of two consecutive hydrogen abstraction steps. The first step includes Cβ–H bond activation of propane followed by the formation of a surface hydroxyl group V–O t H and a propyl radical n-C3H7. This step with the activation energy E* = 0.56 eV (54.1 kJ/mol) appears to be rate-determining. The second step involves the reaction of the bridging O b oxygen atom with the methylene C–H bond of propyl radical n-C3H7 followed by the formation of a hydroxylated surface site HO t –V4+–O b H and propene. The initial steps of the C–H bond activation during propane conversion to propanol and propene by ODH on V5+–(O t O b )? active sites are identical. The obtained results demonstrate that participation of surface oxygen radicals as the active sites of propane ODH makes it possible to explain relatively low activation energies observed for this reaction on the most active catalysts. The presence of very active radical species in low concentration seems to be the key factor for obtaining high selectivity.  相似文献   

4.
祝方明 《高分子科学》2017,35(7):866-873
Herein, we demonstrate the synthesis of a well-defined diblock copolymer consisting of isotactic polystyrene (iPS) and linear polyethylene, isotactic polystyrene-block-polyethylene (iPS-b-PE), by the combination of sequential monomer addition and hydrogenation. Isospecific living polymerization of styrene and living trans-1,4-polymerization of 1,3-butadiene were catalyzed by 1,4-dithiabutandiyl-2,2′-bis(6-cumenyl-4-methylphenoxy) titanium dichloride (complex 1) activated by triisobutyl aluminum modified methylaluminoxane (MMAO) at room temperature to provide highly isotactic polystyrene (iPS) and 1,4-trans-polybutadiene (1,4-trans-PBD) with narrow molecular weight distribution. Furthermore, the iPS-b-1,4-trans-PBD was synthesized via sequential monomer addition in the presence of complex 1 and MMAO. The hydrogenation of the 1,4-trans-PBD block was promoted by RuCl2(PPh3)3 used as a catalyst to produce iPS-b-PE.  相似文献   

5.
A series of Ce–MnO x /TiO2 catalysts were prepared using a novel sol–gel template method and investigated for low-temperature selective catalytic reduction (SCR) of NO with NH3 at temperatures ranging from 353 to 473 K. The 0.07Ce–MnO x /TiO2 catalyst showed the highest activity and best resistance to SO2 poisoning. The structure and properties of the catalysts were characterized using X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), thermogravimetry (TG)–differential scanning calorimetry (DSC)–mass spectroscopy (MS), high-resolution transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller (BET) measurements, H2-temperature-programmed reduction (TPR), and NH3-temperature-programmed desorption (TPD). The superior catalytic activity of the 0.07Ce–MnO x /TiO2 catalyst was probably due to a change in the active components, an increase in surface active oxygen and surface acid sites, and lower crystallinity and larger surface area with Ce doping. Furthermore, the reduction ability also became stronger. The SO2 poisoning resistance of the 0.07Ce–MnO x /TiO2 catalyst improved because doping with Ce can effectively decrease the formation of ammonium salt on the catalyst surface and the sulfation of MnO x . In situ diffuse-reflectance infrared Fourier-transform (DRIFT) spectroscopy experiments indicated that addition of Ce could promote adsorption of NH3 and inhibit generation of some nitryl species. The SCR reactions over the catalysts mainly followed the Eley–Rideal mechanism accompanied with a partial Langmuir–Hinshelwood mechanism.  相似文献   

6.
The polymerization of ethylene and propylene and the copolymerization of ethylene and hexene-1 with a Ti(O-iso-Pr)4–AlR2Cl/MgBu2 catalyst system have been studied. The advantages of this system over metallocene and postmetallocene catalysts are high activity, low cost, and ease of synthesis. The resulting polymers and copolymers are characterized by a broad molecular-mass distribution, which reflects the heterogeneity of the active sites with respect to kinetic parameters. As a consequence, the ethylene/hexene-1 copolymers exhibit compositional heterogeneity. The active sites of the system produce copolymers with a pronounced tendency toward alternation of monomer units. The propylene polymerization product is mostly amorphous atactic polypropylene.  相似文献   

7.
The crystal structures of two polymorphs of molybdenyl salicylidene-2-furfuryliminate [MoO2(L1)2] have been solved by X-ray diffraction. Both complexes crystallize in centrosymmetric and non-centrosymmetric space groups (P21/c and Р21, respectively) of monoclinic system and have similar structures and close geometric parameters. The Мо atoms have a distorted octahedral coordination to two terminal oxo ligands in cis-positions to each other and two pairs of the oxygen atoms (cis- to О(oxo)) and the nitrogen atoms (trans- to О(oxo)) of two bidentate chelate ligands (L1).  相似文献   

8.
A three-component process for the one-pot synthesis of 6-amino-4-aryl-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles by the reaction of aldehydes, 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, and malononitrile in the presence of FSM-16-SO3H as an efficient mesoporous catalyst. The FSM-16-SO3H was prepared and characterized by SEM, XRD, BET, and FT-IR techniques. The advantages of the presented method are high yields, short reaction times, easy purification of products, easy work-up, and reusability of the catalyst.  相似文献   

9.
Polyisoprene with relatively high content of 1,2/3,4 structure was synthesized using a novel catalyst system composed of MoO2Cl2 supported by phosphorus ligand and Al(OPhCH3)(i-Bu)2 as co-catalyst. The effects of phosphites, phosphates and phosphoric acid as ligands were investigated in the coordination polymerization of isoprene in the chosen catalyst system. The studied ligands significantly affected the catalytic activity of the Mo–Al catalytic active center without significant effect on the stereoselectivity. Mo(VI)-based catalyst system was proved to be highly effective in the polymerization of isoprene even at low [Al]/[Mo] ratio (10), affording polyisoprene with 1,2- and 3,4-% structural units in the range of 44.6–52.5%, high molecular weights Mn ~ 105, and relatively broad molecular weight distributions (Mw/Mn = 3.0–4.4). The effect of molar ratio of phosphorous ligand to Mo-catalyst on catalyst activity of isoprene polymerization was discussed, and the structures of Mo–phosphite complexes were preliminarily studied by IR.  相似文献   

10.
A series of PEO45-b-PtBA53-b-PS x (x = 42, 84, 165) triblock terpolymers were synthesized by the atom transfer radical polymerization and characterized by size exclusion chromatography and 1H NMR. Their self-assemblies were conducted by a two-step hierarchical self-assembly method and a one-step dialysis method and the self-assembly behaviors were investigated. The morphologies, sizes, and size distributions of micelles produced by the self-assembly were determined by transmission electron microscopy and dynamic light scattering. The secondary self-assembled structure of PEO45-b-PtBA53-b-PS x obtained by the two-step hierarchical self-assembly could be controlled by tuning the length of PS block, the core forming block. The micelles were uniform with diameters of 20–25 nm and their size distributions, except for that of PEO45-b-PtBA53-b-PS165, were narrow with particle size distribution indexes ranging from 0.014 to 0.246. The one-step dialysis of the triblock terpolymers produced vesicular micelles with distinct vesicle walls that exhibited similar thicknesses. The vesicles did not show significant aggregation. The size distribution of PEO45-b-PtBA53-b-PS42 vesicle was the narrowest with a particle size distribution index value of 0.135. The PEO45-b-PtBA53-b-PS165 vesicles tended to overlap with each other.  相似文献   

11.
The temperature dependence of the heat capacity C p o of the [(Me3Si)7C60]2 fullerene complex was measured for the first time using precision adiabatic vacuum calorimetry over the temperature range 6.7–340 K and high-accuracy differential scanning calorimetry at 320–635 K. For the most part, the error in the C p o values was about ±0.5%. An irreversible endothermic effect caused by the splitting of the dimeric bond between fullerene fragments and the thermal decomposition of the complex was observed at 448–570 K. The thermodynamic characteristics of this transformation were calculated and analyzed. Multifractal analysis of the low-temperature (T < 50 K) heat capacity was performed, and conclusions were drawn concerning the character of the heterodynamicity of the structure. The experimental data obtained were used to calculate the standard thermodynamic functions C p o (T), H o (T) ? H o (0), S o (T) ? S o (0), and G o (T) ? H o (0) over the temperature range from T → 0 to 445 K and estimate the standard entropy of formation of the compound from simple substances at 298.15 K. The standard thermodynamic properties of [(Me3Si)7C60]2 are compared with those of the (C60)2 dimer, the [(η6-Ph2)2Cr]+[C60]?? fulleride, and the initial C60 fullerene.  相似文献   

12.
Two cis-dioxomolybdenum(VI) complexes [MoO2L] (L: L 1, 2 and L: L 2, 3) in a phenol-based sterically encumbered N2O2 ligand environment have been synthesized, and their crystallographic characterizations are reported. The orange crystals of 2 are monoclinic, space group P21/a with unit cell dimensions as a=16.2407(17) Å, b=7.2857(8) Å, c=18.400(2) Å, β=98.002(9)°, Z=4, and d cal=1.486 g cm?3. The light orange crystals of 3, however, are orthorhombic, space group, Pbcn, with unit cell dimensions a=8.3110(12) Å, b=12.637(3) Å, c=34.673(5) Å, Z=4, and d cal=1.187 g cm?3. The structures were refined by a full-matrix least-squares procedure on F 2 to a final R=0.046 (0.055 for 3) using 4944 (3677) all independent data. In both the cases, the Mo atom exists in a distorted octahedral geometry defined by a N2O4 donor set, which features a cis-Mo(–O)2 and a trans-Mo(OPh)2 arrangement. Compound 2 undergoes a quasireversible one-electron reduction at ?1.3 V vs Ag/AgCl reference due to MoVIO2/MoVO2 electron transfer and thus providing a rare example of steric solution to the comproportionation–dimerization problem encountered frequently in the development of valid biomimetic models for the active sites of oxomolybdenum enzymes.  相似文献   

13.
The crystal structures of general composition nBi2O3-mB2O3 were analyzed and systematized with the use of the structures of borate groups. Based on the CNs calculated by the bond valence method, the shapes of bismuth coordination polyhedra derived from an octahedron were suggested. A correlation was found between the number of BO3 triangles and BO4 tetrahedra in borate groups, the average CN of Bi atoms, and the degree of distortion of Bi polyhedra as a function of the m: n ratio, as well as between the polarity of BO4 tetrahedra and noncentrosymmetry of the structures. The role of Bi3+ with the active E pair in the manifestation of specific features of the forms of bismuth polyhedra and the types of connection of boron polyhedra was elucidated.  相似文献   

14.
This research paper comprises of the synthesis of polypyrrole (PPy)-Fe2O3 nanocomposites by employing the in situ chemical oxidative polymerization method. The concentration of the filler material was adjusted between 10–50 wt % of PPy. The synthesized nanocomposites were characterized by using X-ray diffraction (XRD). Magnetic analysis and DC electrical conductivity of the samples were carried out using vibrating sample magnetometer (VSM) and two probe DC conductivity method, point towards magnetically active and electrically conductive samples. The magnetic parameters under applied magnetic field demonstrated that the values of coercivity (H c ), saturation magnetization (M s ) and remanence (M r ) can be tailored by carefully controlling the amount of dopant material into the nanocomposites indicating their suitability for controllable switching devices and microwave absorption applications. The DC electrical conductivity showed an increase up to 20 wt % of filler material and thereafter a decrease in the conductivity of nanocomposites with increase in filler content is observed. Thermogravimetric analysis (TGA) showed an increase in thermal stability with an increase in ferrite content in nanocomposites.  相似文献   

15.
The subsolidus region of the Ag2MoO4-MgMoO4-Al2(MoO4)3 ternary salt system has been studied by X-ray phase analysis. The formation of new compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 (0 ≤ x ≤ 0.4) and AgMg3Al(MoO4)5 has been determined. The Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 variable-composition phase is related to the NASICON type structure (space group R \(\bar 3\) c). AgMg3Al(MoO4)5 is isostructural to sodium magnesium indium molybdate of the same formula unit and crystallizes in triclinic system (space group P \(\bar 1\), Z = 2) with the following unit cell parameters: a = 9.295(7) Å, b = 17.619(2) Å, c = 6.8570(7) Å, α = 87.420(9)°, β = 101.109(9)°, γ = 91.847(9)°. The compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 and AgMg3Al(MoO4)5 are thermally stable up to 790 and 820°C, respectively.  相似文献   

16.
The KPb2Cl5 and KPb2Br5 crystals are monoclinic (P21/c) with a microtwinned structure. X-ray analysis of chloride resulted in the parameters a = 8.854(2) Å, b = 7.927(2) Å, c = 12.485(3) Å; β = 90.05(3)°, dcalc = 4.78(1) g/cm3 (STOE STADI4, MoKα, 2θmax = 80°), R1 = 0.0702 for 4094 F ≥ 4 σ(F) reflections. For bromide, a = 9.256(2) Å, b = 8.365(2) Å, c = 13.025(3) Å; β = 90.00(3)°, dcalc = 5.62(1) g/cm3 (Bruker P4, MoKα, 2θmax = 70°), R1 = 0.0692 for 3076 F ≥ 4 (F) reflections.  相似文献   

17.
A novel copper(II) complex {[Cu(BIX)2(H2O)2](PhCOO)2} n (1) (BIX = 1,4-bis(imidazole-1-methyl))-benzene) is synthesized and characterized by elemental analysis, IR, TG, and single crystal X-ray diffraction. Complex 1 crystallizes in the triclinic crystal system with the P-1 space group, Z = 1, a = 9.465(2) Å, b = 9.703(2) Å, c = 12.060(2) Å, α = 77.26(3)°, β = 70.37(3)°, γ = 67.14(3)°, and V = 956.1(3) Å3. The crystal structural analysis of complex 1 shows that the copper center is six-coordinated in an elongated octahedral geometry by four N atoms from four different BIX and two O atoms from two water molecules; two neighboring Cu(II) cations are bridged by two BIX extending into an infinite 1D double chain structure.  相似文献   

18.
The products of thermobaric treatment of the metastable Re0.50Rh0.50 nanocrystalline phase (a= 2.733(2) Å, c = 4.364(4) Å, space group P63/mmc, CSR ~5 nm) in a high-pressure chamber were studied. Storage of the phase at 2000°C and 1.5 GPa for 3 min led to the formation of a fused particle (Ø~1 mm). The initial composition did not change, but the coherent scattering region (CSR) increased to 52 nm. An increase to 4 GPa in pressure also did not lead to a decomposition of the metastable Re0.50Rh0.50 phase, the unit cell parameters remained the same, and the size of the CSR increased by a factor of four.  相似文献   

19.
The internal rotation potential function of the acryloyl chloride molecule in the S 0 and S 1 electronic states was reproduced using systems of torsional vibration levels obtained for its trans and cis isomers by analyzing the vibrational structure of the UV spectrum of the molecule. The kinematic factor F in the S 0 ground state was calculated including geometric parameter relaxation as a function of internal rotation angle. The torsional potential parameters in the S 0 state obtained in this work were substantially different from those determined from the infrared Fourier-transform spectrum ignoring the resonance perturbation of the level with v = 3. The form of the internal rotation potential function and the higher stability of the trans isomer (the main isomer) were substantiated by high-level quantum-mechanical calculations.  相似文献   

20.
The binary molybdate Li2Zn2(MoO4)3 of a new crystal type was characterized by EPR, optical spectroscopy, and X-ray diffraction methods. The crystals have the Pnma symmetry group and the lattice parameters a = 5.1139(5) Å, b = 10.4926(13) Å, c = 17.6445(22) Å; Z = 4. The crystals possess scintillation properties; emission is caused by the presence of impurity levels in the forbidden band. The EPR studies of the nature of the impurity centers responsible for the scintillation characteristics of the crystal showed that the centers were Cu2+ ions substituted for zinc ions in the oxygen octahedra. The directions of the main values of the g and tensors (g zz , A zz ) correspond to the direction of O-Cu-O of the oxygen octahedron distorted along the Z axis. The EPR spectra of the copper ions are described by the spin Hamiltonian with the parameters g = 2.38, g = 2.06; A = 116 G, A = 0 G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号