首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Colloidal quantum dots of the CdSe family have been studied by X-ray absorption near edge structure (XANES) spectroscopy and computer modelling. CdK edge XANES spectra in colloidal quantum dots based on varisized CdSe nanoparticles have been recorded. Atomic structure of CdSe particles and also CdSe particles doped by transition metal atoms Mn and Co has been modelled based on the density functional theory. The embedding of the doping atoms is shown to result in considerable changes in the local atomic structure of CdSe particles. XANES spectra have been calculated above the CdK edge in CdSe particles, above the MnK edge in CdSe:Mn particles, above the CoK edge in CdSe:Co particles. The sensitivity of XANES spectroscopy to small changes in structural parameters of the nanoparticles of CdSe family has been demonstrated that furnishes an opportunity to apply it for the verification of atomic structure parameters around positions of cadmium and doping atoms of transition metals in quantum dots based on CdSe.  相似文献   

2.
An in silico study of semiconductor quantum dots of the CdTe family doped with atoms of rare earth elements is performed based of density functional theory. An ab initio computer design of quantum dots based on CdTe nanoparticles doped with Eu и Gd atoms is carried out. Partial densities of states of CdTe:Eu and CdTe:Gd quantum dots are calculated and analyzed. X-ray absorption near edge (XANES) spectra near the Eu K-, L1-, and L3- and Gd K-, L1-, and L3-edges of CdTe:Eu and CdTe:Gd quantum dots are calculated. The sensitivity of XANES spectroscopy for the verification of parameters of a nanosized atomic structure of quantum dots based on CdTe particles doped with atoms of rare earth elements and the determination of the local atomic structure around the atoms of rare earth elements in quantum dots is demonstrated.  相似文献   

3.
Orthovanadate ErVO4 has been prepared by solid-phase synthesis from a stoichiometric mixture of high pure V2O5 and chemically pure Er2O3 by multistage calcination in air in the temperature range 873–1273 K. The effect of temperature (380–1000 K) on the heat capacity of orthovanadate ErVO4 was studied by hightemperature calorimetry. Thermodynamic properties of erbium orthovanadate (enthalpy change H°(T)–H°(380 K), entropy change S°(T)–S°(380 K), and reduced Gibbs energy Φ°(T)) have been calculated from the experimental Cp = f(T) data. It has been shown that the specific heat varies in a row of oxides and orthovanadates of Gd-Lu naturally depending on the radius of the R3+ ion within the third and fourth tetrads.  相似文献   

4.
The carbon K-edge NEXAFS spectra of initial and fluorinated and hydrogenated single-wall carbon nanotubes (SWCNTs) are analyzed theoretically with regard to the polarization dependence. Differences in the polarized theoretical spectra of SWCNTs with zigzag and chair chiralities are shown. As a result of the comparison of experimental and theoretical carbon K-edge NEXAFS spectra of hydrogenated and fluorinated SWCNTs it is found that it is most probable that hydrogen atoms attach to the outer surface of the tube wall and fluorine atoms to the outer and inner surfaces of the SWCNT wall. Based on the analysis of polarized theoretical spectra of fluorinated and hydrogenated SWCNTs differences in the symmetry of the final states of C-H and C-F bonds are shown.  相似文献   

5.
The equilibrium constantK of the methanolysis of nitrosyl chloride was determined. The activities of HCl and CH3OH in methanolic solutions of hydrogen chloride have been already published. The equilibrium was established from the right side by adding known amounts of methyl nitrite to methanolic hydrochloric acid (0–18m). The equilibrium concentration of NOCl was measured by means of aPulfrich photometer. For 25°C it was foundK=14.1, for 15°CK=18.9, and for 0.5°CK=30.3. From these results the thermodynamic functions of the methanolysis of nitrosyl chloride ΔG°, ΔH° and ΔS° were calculated.  相似文献   

6.
Heat capacity of NdVO4 was determined in the temperature range of 384–859 K using differential scanning calorimetry. The thermodynamic functions (H°(T)–H°(384 K), S°(T)–S°(384 K), and Φ°) of neodymium orthovanadate were calculated using the experimental Cp = f(T) values. The structure of NdVO4 was studied at 298 and 973 K.  相似文献   

7.
The heat capacity and the temperatures and enthalpies of physical transformations of the alternating terpolymer of carbon monoxide, ethylene, and 1-butene (the content of butene units is 10.7 mol.%) were studied by adiabatic and differential scanning calorimetry in the temperature range from 6 to 520 K. The energy of terpolymer combustion was measured at 298.15 K on an calorimeter with an isothermal shell and static bomb. The standard thermodynamic functions C°p(T), H°(T)–H°(0), S°(T)–S°(0), and G°(T)–H°(0) for the range from Т → 0 to 400 K, the standard enthalpy of combustion, and the thermodynamic parameters of formation of the partially crystalline CO—ethylene—1-butene terpolymer at 298.15 K, as well as the thermodynamic characteristics of its synthesis in the range from T → 0 to 400 K were calculated.  相似文献   

8.
Temperature dependences of the heat capacity of new zincate-manganites of LaM2IIZnMnO6 (MII = Mg, Ca, Sr, Ba) composition are studied via experimental calorimetry in the interval of 298.15–673 K. It is found that all compounds have λ-shape effects on the curve of dependence Cp° ~ ?(T) with respect to phase transitions of the second kind. Equations for the temperature dependence of the heat capacity are derived with allowance for phase transition temperatures, and thermodynamic functions H°(T) ? H°(298.15), S°(T) and Φxx(T) are calculated on the basis of experimental data on Cp°(T) and the calculated S°(298.15) value.  相似文献   

9.
The values of ΔH°298, S°298, H°298H°0, T, ΔH fus, and C p(T), as well as the temperature dependences of the Gibbs energy function, are calculated for Bi8O11 oxide by proven computational methods.  相似文献   

10.
The thermodynamic properties of amorphous polyphenylquinoxaline in the temperature range of 6 to 570 K are studied via precision adiabatic vacuum calorimetry and differential scanning calorimetry. The thermodynamic characteristics of glass transition are determined. Standard thermodynamic functions C°p, H°(T) ? H°(0), S°(Т) ? S°(0), and G°(T) ? H°(0) in the range of T → 0 to 570 K and the standard entropy of formation at T = 298.15 K are calculated. The low-temperature (T ≤ 50 K) heat capacity is analyzed using a multifractal model for the processing of heat capacity, fractal dimension D values are determined, and conclusions on the topological structure of the compound are drawn.  相似文献   

11.
The heat capacities of first- and third-generation carbosilane dendrimers with terminal phenyldioxolane groups are studied as a function of temperature via vacuum and differential scanning calorimetry in the range of 6 to 520 K. Physical transformations that occur in the above temperature range are detected and their standard thermodynamic characteristics are determined and analyzed. Standard thermodynamic functions Cpο(T), [H°(T) ? H°(0)], [S°(T) ? S°(0)], and [G°(T) ? H°(0)] in the temperature range of T → 0 to 520 K for different physical states and the standard entropies of formation of the studied dendrimers at T = 298.15 K are calculated, based on the obtained experimental data.  相似文献   

12.
A method has been purposed to calculate some of the thermodynamic quantities for the thermal deformation of a smectite without using any basic thermodynamic data. The Hanç?l? (Keskin, Ankara, Turkey) bentonite containing a smectite of 88% by volume was taken as material. Thermogravimetric (TG) and differential thermal analysis (DTA) curves of the sample were obtained. Bentonite samples were heated at various temperatures between 25–900°C for the sufficient time (2 h) until to establish the thermal deformation equilibrium.Cation-exchange capacity (CEC) of heated samples was determined by using the methylene blue standard method. The CEC was used as a variable of the equilibrium. An arbitrary equilibrium constant (K a) was defined similar to chemical equilibrium constant and calculated for each temperature by using the corresponding CEC-value. The arbitrary changes in Gibbs energy (ΔG a 0 ) were calculated from K a-values. The real change in enthalpy (ΔH 0) and entropy (ΔS 0) was calculated from the slopes of the lnK vs. 1/T and ΔG vs. T plots, respectively. The real changes in Gibbs energy (ΔG 0) and real equilibrium constant (K) were calculated by using the ΔH 0 and ΔS 0 values. The results at the two different temperature intervals are summarized as below: ΔG 1 0 H 1 0 S 1 0 T=?RTlnK 1=47000?53t, (200–450°C), and ΔG 2 0 H 2 0 S 2 0 T=?RTlnK 2=132000?164T, (500–800°C).  相似文献   

13.
The temperature dependence of the heat capacity of triphenylantimony dibenzoate Ph3Sb(OC(O)Ph)2 is studied in the range of 6–480 K by means of precision adiabatic vacuum calorimetry and differential scanning calorimetry. The melting of the compound is observed in this temperature range, and its standard thermodynamic characteristics are identified and analyzed. Ph3Sb(OC(O)Ph)2 is obtained in a metastable amorphous state in a calorimeter. The standard thermodynamic functions of Ph3Sb(OC(O)Ph)2 in the crystalline and liquid states are calculated from the obtained experimental data: Cp°(T), H°(T)–H°(0), S°(T), and G°(T)–H°(0) for the region from T → 0 to 480 K. The standard entropy of formation of the compound in the crystalline state at T = 298.15 K is determined. Multifractal processing of the low-temperature (T < 50 K) heat capacity of the compound is performed. It is concluded that the structure of the compound has a planar chain topology.  相似文献   

14.
The temperature dependence of heat capacity C° p = f(T) of crystalline arsenate Mg0.5Zr2(AsO4)3 was studied by precision adiabatic vacuum and differential scanning calorimetry in the temperature range 8?670 K. The standard thermodynamic functions C° p (T), H°(T)–H°(0), S°(T), and G°(T)–H°(0) of the arsenate for the range from Т → 0 to 670 K and the standard formation entropy at Т = 298.15 K were calculated from the obtained experimental data. Based on the low-temperature capacity data (30–50 K) the fractal dimension D of the arsenate was determined, and the topology of its structure was characterized. The results were compared with the thermodynamic data for the structurally related crystalline phosphates M0.5Zr2(PO4)3 (M = Mg, Ca, Sr, Ba, Ni) and arsenate NaZr2(AsO4)3.  相似文献   

15.
The heat capacity of a glassy third-generation poly(phenylene-pyridyl) dendron decorated with dodecyl groups is studied for the first time via high-precision adiabatic vacuum and differential scanning calorimetry in the temperature range of 6 to 520 K. The standard thermodynamic functions (molar heat capacity Cp°, enthalpy H°(T), entropy S°(T), and Gibbs energy G°(T)-H°(0)) in the range of T → 0 to 480 K, and the entropy of formation at 298.15 K, are calculated on the basis of the obtained data. The thermodynamic properties of the dendron and the corresponding third-generation poly(phenylene-pyridyl) dendrimer studied earlier are compared.  相似文献   

16.
The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6–370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions Cp°(T), H°(T) ? H°(0), S°(T) ? S°(0), and G°(T) ? H°(0) are calculated from the obtained experimental data for the region of Т → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at Т = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.  相似文献   

17.
Thermal analysis on organically modified Ca2+-montmorillonite (OMON) and its source materials—octadecylamine (ODA) and Ca2+-montmorillonite (Ca2+-Mon)—was studied using thermally stimulated current (TSC) technique. The appearance of ρ MON peak with the T max = 75 °C shows the ability of the developed TSC system to demonstrate the relaxation effects of dehydration in Ca2+-Mon. It appeared within the temperature range of DSC endothermic peak (30–100 °C) where the T mMON = 58 °C. Segmental motions of ODA chains and structural disruptions in the modifier agent compound produced TSC α ODA, ρ ODA and ρ 1ODA peaks that are comparable to thermal transition and endothermic peaks in DSC profile (T gODA, T m1ODA and T m2ODA). The effect of localized motion in ODA chains as revealed by the TSC βOMON peak (T max = ?23 °C), however, is absent in the DSC profile of OMON. It shows TSC technique has high sensitivity in detecting various relaxation behaviors at molecular level. More evidences are demonstrated by the ρ OMON (T max = 86 °C) and ρ 1OMON (T max = 105 °C) peak originated from the ODA chains structures. These peaks also confirm the intercalation of the modifier cations inside the Ca2+-Mon gallery.  相似文献   

18.
Temperature dependences of the heat capacity of cobalt manganites NdM2 I CoMnO5 (MI = Li, Na, and K) are studied by means of dynamic calorimetry in the range of 298.15?673 K. It is found that λ-shaped effects are observed on the C p ° ~ f (T) curve of cobalt manganites, due probably to second order phase transitions. Based on the experimental data, equations for the temperature dependences of the heat capacity of cobalt manganite are derived with allowance for the temperatures of phase transitions. The values of thermodynamic functions Н°(T)–Н°(298.15), S°(T), and Фхх(T) are calculated.  相似文献   

19.
With the aid of new acceptors of free radicals usable at high temperatures (T > 100°C), the rate of initiation w i has been measured experimentally for the thermal polymerization of styrene at 122.5°C in a wide range of conversions C = 0–80%. It has been shown that the value of w i tends to increase in the course of polymerization transformation in agreement with the w i = f(C) relationship calculated from the kinetic data on the thermal polymerization of styrene in the absence of counters of free radicals. Hypothetical reasons for this non-trivial tendency have been formulated. The experimental dependence w i = f(C) has been measured for the first time and has been invoked to refine currently available mathematical models for the thermal polymerization of styrene that assume that w i remains invariable in the course of polymerization transformation.  相似文献   

20.
Stannates Dy2Sn2O7 and Ho2Sn2O7 are produced by solid-phase synthesis from Dy2O3 (Ho2O3)–SnO2 stoichiometric mixtures by calcining at 1473 K. The molar heat capacity of holmium and dysprosium stannates is measured by differential scanning calorimetry (DSC) in the temperature range 370–1000 K. The experimental data are used to calculate thermodynamic properties (enthalpy change H°(T)–H°(370 K), entropy change S°(T)–S°(370 K), and the reduced Gibbs free energy Φ°(T)) of the synthesized compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号