首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Synthesis, spectroscopic characterization, theoretical and antimicrobial studies of Ca(II), Fe(III), Pd(II), and Au(III) complexes of amoxicillin (amox) antibiotic drug are presented in the current paper. Structure of 1: 1 (metal: amox) complexes were elucidated on the basis of elemental analyses, and IR, Raman, 1H NMR, and electronic spectral data. According to molar conductance measurements the complexes had electrolyte nature. Amoxicillin reacted with metal ions as a tridentate ligand coordinated with metal ions via–NH2,–NH, and β-lactam carbonyl groups. The complexes were formulated as [Ca(amox-Na)(H2O)]·Cl2·4H2O (1), [Fe(amox-Na)(H2O)3]·Cl3·3H2O (2), [Pd(amox-Na)(H2O)]·Cl2 (3), and [Au(amox-Na)(H2O)]·Cl3 (4). Kinetic thermodynamic parameters (E*, ΔS*, ΔH*, and ΔG*) were calculated based on the Coats–Redfern and Horowitz–Metzger methods using thermo gravimetric curves of TG and DTG. Nanosize particles of amoxicillin complexes have been studied by XRD, SEM, and TEM methods. Theoretical studies of the synthesized complexes have been performed.  相似文献   

2.
The work reported the synthesis and characterisation of Fe2+, Co2+, and Ni2+ complexes of 2-(4,6-dihydroxypyrimidin-2-ylamino)naphthalene-1,4-dione (HL). The spectroscopic and elemental analysis results obtained were consistent with the adoption of the formulas, [ML2] (M = Fe and Co) and [ML2(H2O)] (M = Ni) for the metal complexes. Electronic spectra and magnetic moments of the metal complexes corroborated octahedral geometry for Ni(II) complex and tetrahedral geometry for Fe(II) and Co(II) complexes. However, quantum-chemical calculations using density functional theory predicted trigonal bipyramidal geometry for Ni(II) complex and provided corroborative explanations for the structures of the other complexes. Conductance measurements in dimethylsulfoxide indicate that the complexes are non-electrolytes. The antimicrobial potential of the compounds was evaluated against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, Proteus mirabilis, Klebsiella oxytoca, Aspergillus niger, A. flavus, and Rhizopus stolonifer. The compounds gave moderate to good antimicrobial activity. However, the bacterial and fungal organisms were more susceptible to the cobalt complex and ligand respectively than the other compounds at concentration of 10 mg/mL. The compounds were also assessed for their antioxidant potential using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. The compounds displayed good DPPH radical scavenging activities. The nickel complex exhibited the best DPPH radical scavenging activity compared to the other compounds.  相似文献   

3.
The complexation between the lanthanide metal ions Ce(III), Gd(III), Nd(III), Tb(III), and Er(III) and gliclazide produced 1 : 1 molar ratio metal: gliclazide (Glz) complexes coordinated in a monodentate fashion via the OH group and having the general formulas [M(Glz)Cl3(H2O)]·xH2O (M = Ce, Gd, Nd and x = 1, 3, 4, respectively) and [M(Glz)(H2O)4]Cl3·yH2O (M = Tb, Er and y = 1, 2, respectively). The structure of the synthesized lanthanide gliclazide complexes was assigned by IR, 1HNMR, and UV-Vis spectroscopy. Thermal analysis and kinetic and thermodynamic parameters gave evidence for the thermal stability of the Glz complexes. The latter showed a significant antimicrobial effect against some bacteria and fungi.  相似文献   

4.
A series of new 3d metal complexes based on dimethyl pyridin-2-ylcarbamoylphosphoramidate (HL) was synthesized. The compounds with general formula M(HL)2Cl2·nH2O and M(L)2·nH2O (M=Co2+, Cu2+, Ni2+) were characterized by means of single-crystal X-ray analysis and IR spectroscopy. The organic ligands in all complexes are coordinated via oxygen atom of the carbonyl group and nitrogen atom of the heterocycle. The coordination environment of the central atoms is a distorted octahedron. The axial positions in the Co(II) and Ni(II) complexes with deprotonated ligands are occupied by water molecules. The Co(II) and Cu(II) complexes with phosphoryl ligands in a neutral form have different ligands in the axial positions: in the Co(II) complex, the positions are occupied by two water molecules, whereas in the Cu(II) complex, the positions are occupied by two chlorine anions. The structure of HL was experimentally and theoretically obtained by utilizing single-crystal X-ray analysis and DFT calculations. The computationally optimized geometric parameters for HL show a good agreement with the experimental results.  相似文献   

5.
Three new metal complexes of 4,6-bis(4-chlorophenyl)-2-amino-1,2-dihydropyridine-3-carbinitrile (L) with Co(II), Ni(II) and Cu(II) were synthesized and characterized with physicochemical and spectroscopic techniques. The data suggest that (L) acts as a bidentate ligand bound to the divalent metal ions through amino N and carbinitrile N atoms having [M(L)2(H2O)2]2+ formula (M = metal ions). The theoretical parameters, model structures, charges and molecular orbitals of all possible complexes have been determined using density functional theory. The energy gap of free ligand is ?E = 0.12565 eV, and this value is greater than energy gap of complexes, which indicates that the complexes are more reactive than free ligand. Also, ?E of Co(II) complex is lower than other complexes, which indicates that Co(II) complex is more reactive than Ni(II) and Cu(II) complexes. The antibacterial and antifungal activities of the ligand, metal salts and its complexes were tested against some microorganisms (bacteria and fungi). The complexes showed increased antibacterial and antifungal profile in comparison with the free ligand.  相似文献   

6.
Copper(II) and cobalt(II) complexes with 4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methyl-2-phenylpyrimidine (L) of the general formula MLX2 (M = Cu(II), X = Cl and Br; M = Co(II), X = Cl, Br, and I) were obtained. According to X-ray diffraction data, CuLBr2 and CoLX2 (X = Cl, Br, and I) are mononuclear molecular complexes. The ligand L is coordinated to the metal atom in a chelating bidentate fashion through the N atoms of the pyrimidine and pyrazole rings. The coordination polyhedron of the metal atom is extended to a distorted tetrahedron by two halide ions. In solution, CuLBr2 undergoes slow transformation into CuL(1?x)L′ x Br2 and the binuclear (X-ray diffraction data) Cu(I) complex [CuL(1?x)L′ x Br]2 (L′ is 4-(4-bromo-3,5-dimethyl-1H-pyrazol-1-yl)-6-methyl-2-phenylpyrimidine). The complexes MLX2 show weak antiferromagnetic interactions between the M2+ ions.  相似文献   

7.
Fifteen new complexes of transition metals were designed using three Schiff base ligands and aldol condensation of 2,3-diaminopyridine with 5-R-2-hydroxybenzaldehyde (R = F, Cl, Br) in the 1:2 molar ratio. The tetradentate ligands N,N′-bis(5-R-2-hydroxybenzaldehyde) pyridine were acquired with the common formula H2[(5-R-sal)2py] and characterized by IR, UV–Vis spectra, 1H-NMR and elemental analysis. These ligands produce 1:1 complexes M[(5-R-sal)2py] with Fe(III), Ni(II), Co(III), V(IV) and U(VI) metal ions. The electronic property and nature of complexes were identified by IR, UV–Vis spectra, elemental analysis, X-ray crystallography and cyclic voltammetric methods. The catalytic activity of complexes for epoxidation of styrene with UHP as primary oxidant at minimal temperature (10 °C) has been planned. The spectral data of the ligands and their complexes are deliberate in connection with the structural changes which happen due to complex preparation. The electrochemical outcome has good conformability with what suggested for electronic interaction among metal center and ligand by the UV–Vis and IR measurements.  相似文献   

8.
Slow evaporation of solutions of Sc and Eu nitrates with macrocyclic cavitand cucurbit[6]uril gives crystals of isostructural complexes [Sc(NO3)(H2O)4(C36H36N24O12)](NO3)2 ? 8.5H2O (space group Pna21, a = 32.0065(18) Å, b = 14.7904(8) Å, c = 11.5774(6) Å, V = 5480.6(5) Å3, Z = 4) and [Eu(NO3)(H2O)4(C36H36N24O12)](NO3)2 ? 6.75H2O (space group Pna21, a = 31.9525(17) Å, b = 14.7203(8) Å, c = 11.8592(6) Å, V = 5578.0(5) Å3, Z = 4). The metal to ligand ratio in these complexes is 1 : 1; the complexes are obtained at 0.025–0.1 mol/l concentrations of the metals in solutions. With higher lanthanide concentrations (0.7–1 mol/l), the 2 : 1 complex with cucurbit[6]uril is formed of the composition [{ Gd(NO3)(H2O)5}2(C36H36N24O12)](NO3)4 ? 6.5H2O (space group \(P\bar 1\), a = 13.3972(6) Å, b = 14.4994(5) Å, c = 18.3290(8) Å, α = 73.5610(10)°, β = 87.2590(10)°, γ = 87.5540(10)°, V = 3409.4(2) Å3, Z = 2) and isotypical complex [{Gd(NO3)(H2O)5}2{(C5H5N) ? (C36H36N24O12)}](NO3)4 ? 8H2O with a pyridine molecule inside the cucurbit[6]uril cavity (space group P21/n, a = 14.8263(6) Å, b = 13.3688(7) Å, c = 18.5970(9) Å, β = 107.5860(10)°, V = 3513.8(3) Å3, Z = 2). According to X-ray diffraction data, the metal atoms of the title complexes coordinate the O atoms in portals of cucurbit[6]uril molecules.  相似文献   

9.
The molar heat capacity and the standard (p 0 = 0.1 MPa) molar enthalpies of formation of the crystalline of bis(glycinate)lead(II), Pb(gly)2; bis(dl-alaninate)lead(II), Pb(dl-ala)2; bis(dl-valinate)lead(II), Pb(dl-val)2; bis(dl-valinate)cadmium(II), Cd(dl-val)2 and bis(dl-valinate)zinc(II), Zn(dl-val)2, were determined, at T = 298.15 K, by differential scanning calorimetry, and high precision solution-reaction calorimetry, respectively. The standard molar enthalpies of formation of the complexes in the gaseous state, the mean molar metal–ligand dissociation enthalpies, M(II)–amino acid, \( \langle D_{\text{m}} \rangle \)(M–L), were derived and compared with analogous copper(II)–ligand and nickel(II)–ligand.θθ
M(II)–amino acid \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \)(cr)/kJ mol?1
Bis(glycinate)lead(II), Pb(gly)2 ?998.9 ± 1.9
Bis(dl-alaninate)lead(II), Pb(ala)2 ?1048.7 ± 1.8
Bis(dl-valinate)lead(II), Pb(val)2 ?1166.3 ± 2.5
Bis(dl-valinate)cadmium(II), Cd(val)2 ?1243.7 ± 2.7
Bis(dl-valinate)zinc(II), Zn(val)2 ?1306.1 ± 2.3
  相似文献   

10.
Two new cobalt(III) and zinc(II) complexes, [Co(L1)2 (H2O)] · ClO4 (I) and [Ni(L2)2 (H2O)2] · 2ClO4 (II), where L1 is the deprotonated form of 5-methoxy-2-[(2-morpholin-4-ylethylimino)methyl]phenol, and L2 is the zwitterionic form of 2-[(2-isopropylaminoethylimino)methyl]-5-methoxyphenol, were synthesized and structurally characterized by elemental analyses, IR spectra, and single-crystal X-ray diffraction. The crystal of I is monoclinic: space group P21/c, a = 11.1512(4), b = 28.2424(11), c = 10.9655(4) Å, β = 95.746(2)°, V = 3436.1(2) Å3, Z = 4. The crystal of II is triclinic: space group P21/c, a = 8.1441(2), b = 10.4531(3), c = 10.8849(3) Å, α = 84.0240(10)°, β = 76.9800(10)°, γ = 74.2280(10)°, V = 867.92(4) Å3, Z = 1. Complex I consists of a mononuclear cobalt(III) complex cation and a perchlorate anion. Complex II consists of a crystallographic centrosymmetric mononuclear nickel(II) complex cation and two perchlorate anions. Each metal atom in the complexes is in an octahedral coordination.  相似文献   

11.
A new Schiff base ligand C19H13NO5(H2L) was synthesized using 2-aminoterephthalic acid and 2-hydroxy-1-naphthaldehyde. A complex of this ligand [Cu(C19H11NO5)(C2H6O)] n was synthesized and characterized by IR, UV, fluorescence spectroscopy and X-ray diffraction single-crystal analysis. The crystal crystallizes in the monoclinic system, space group Pbca with a = 8.7745(18), b = 18.613(4), c = 24.644(5) Å, V = 4024.9(14) Å3, Z = 8, F(000) = 1816, S = 1.009, ρ calcd = 1.462 g cm?3, μ = 1.122 mm?1, the final R = 0.0477 and wR = 0.1594 for 4609 observed reflections (I > 2σ(I)). The Cu(II) is five-coordinated by one N atom and two O atoms from the Schiff base ligand and two carboxylate O atoms from another two ligands to form a distorted square-pyramidal geometry. Each ligand serves as a bridging ligand to link Cu2+ ions, leading to a two-dimensional coordination polymer. The fluorescence properties of the ligand and complex were also studied. The ligand shows strong fluorescence, and the fluorescence intensity is weakened after the Cu(II) complex formed.  相似文献   

12.
A series of compounds of the general formula Cu(HL)X2 · nH2O (compound I, X = ClO4, n = 3; compound II, X = NO3, n = 2; compound III, X = Cl, n = 0.5; compound IV, X = 1/2SO4, n = 0) is isolated by the reactions of the copper(II) salts with quinolinaldehyde semicarbazone (HL). Regardless of the reactant ratio, only the compounds with a metal to ligand mole ratio of 1: 1 are formed, where the organic reactant is coordinated in the molecular form. The X-ray diffraction analyses of the [Cu(HL)(NO3)(H2O)](NO3) · H2O (II) and [Cu(HL)Cl2] · 0.5H2O(III) compounds show their substantially different organizations of the molecular structures depending on the specifics of the acido ligand. An ionic structure with one NO 3 ? anion incorporated into the inner coordination sphere of the metal as a bidentate chelate ligand is observed in compound II. Molecular tetragonal pyramidal complexes associated into a dimer due to the bridging function of one coordinated Cl? anion are formed in structure III. The coordination polyhedron of the copper atom in structures II and III is an asymmetrically extended tetragonal bipyramid. The CuClCu angle equal to 90° and the distance between two planes in compound III equal to 2.978 Å determine the insignificant antiferromagnetic interaction in this compound (g = 2.1, J = ?2.5 cm?1).  相似文献   

13.
The formation of mixed-ligand complexes in the M(II)–Ida–L systems (M = Cu, Ni, L = His, Orn, Lys), where Ida is the iminodiacetic acid residue, was studied by pH-metry, calorimetry, and spectrophotometry. The thermodynamic parameters (logK, ΔrG0, ΔrH, ΔrS) of formation of the complexes were determined at 298.15 K and the ionic strength I = 0.5 (KNO3). The most probable mode of coordination of the chelating agent and the amino acid in the mixed-ligand complexes was elucidated.  相似文献   

14.
A new cobalt(II,III) complex, [CoIIIL2]2[Co 2 II (HL)2(OH2)2(CH3OH)2] ? 2H2O (I) and a new iron(III) complex, [FeIII(HL)2](NO3) (II), where L2– and HL are the dianionic and monoanionic form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, respectively, have been prepared and characterized by elemental analyses, infrared and UV-Vis spectroscopy and single-cyrstal X-ray diffraction (CIF files CCDC nos. 1417971 (I), 1417979 (II)). Complex I crystallizes in the monoclinic space group P21/n with unit cell dimensions a = 16.1665(9), b = 14.5692(8), c = 19.086(1) Å, β = 96.347(1)°, V = 4467.9(4) Å3, Z = 2, R 1 = 0.0521, and wR 2 = 0.1411. Complex II crystallizes in the orthorhombic space group Pbcn with unit cell dimensions a = 12.475(1), b = 12.202(1), c = 18.859(2) Å, V = 2870.8(4) Å3, Z = 4, R 1 = 0.0796, and wR 2 = 0.1981. The metal atoms in the complexes are in octahedral coordination. Crystals of the complexes are stabilized by hydrogen bonds. The efficiency of the aroylhydrazone and the two complexes was evaluated against B. subtilis, S. aureus, E. coli, P. fluorescence, C. albicans and A. niger, with the complexes demonstrating enhanced activity relatively to the free ligand.  相似文献   

15.
Two new square planar complexes with the formula Co(L)2 · CH3OH (1) and Ni(L)2 · CH3OH (2) (HL = HN{C(Me)=NH}2 = N-acetimidoylacetamidine) have been synthesized by solvothermal reactions in methanol/acetonitrile. N-acetimidoylacetamidine ligand was derived from the self-condensation reaction of acetonitrile, and the reaction was promoted by the cooperation of M(II) (M = Co in 1 and M = Ni in 2) with diphenylcarbazide. 1 and 2 are characterized by single crystal X-ray diffraction, elemental analysis and infrared spectrum. Both complexes crystallize in the monoclinic space group P21/c with a = 9.329(6) Å, b = 11.494(7) Å, c = 13.040(8) Å, β = 92.945(11)°, V = 1396.3(16) Å3 and Z = 4 for 1, and a = 9.323(4)Å, b = 11.512(5) Å, c = 13.020(6)Å, β = 92.819(7)°, V = 1395.7(10)Å3 and Z = 4 for 2.  相似文献   

16.
Zinc(II) and manganese(II) complexes of 2-(diphenylacetyl)indandione-1,3 (HL) were synthesized. Crystals of [M(DMSO)2L2] · CHCl3, where M= Zn(II) (I) and Mn(II) (II), obtained from chloroform plus dimethyl sulfoxide (DMSO) mixture were found to be isostructural based on the similarity of their unit cell parameters and unit cell volumes. The crystals are triclinic, Z = 2, space group P \(\bar 1\); a = 10.422(1) Å, b = 11.929(1) Å, c = 20.429(1) Å, α = 73.616(1)°, β = 85.095(1)°, γ = 77.586(1)° for complex I; a = 10.436(1) Å, b = 12.297(1) Å, c = 19.924(2) Å, α = 78.138(2)°, β = 87.625(2)°, γ = 82.048(2)° for complex II. X-ray structural analysis of complex I was carried out. For complex II, the structure was not refined because all of its atoms are each disordered over three to five positions. The two DMSO molecules in complex I coordinate the central metal atoms in the monodentate mode via their donor oxygen atoms to occupy an axial position and an equatorial position in an octahedral polyhedron. The other four positions are occupied by the four oxygen atoms of the two deprotonated ligands L? coordinated in the bidentate-cyclic mode. The outer sphere of complex I contains the solvating chloroform molecule.  相似文献   

17.
A series of new arene ruthenium(II) complexes were prepared by reaction of ruthenium(II) precursors of the general formula [(η6-arene)Ru(μ-Cl)Cl]2 with N,N′-bidentate pyridyl-imine ligands to form complexes of the type [(η6-arene)RuCl(C5H4N-2-CH=N-R)]PF6, with arene = C6H6, R = iso-propyl (1a), tert-butyl (1b), cyclohexyl (1c), cyclopentyl (1d) and n-butyl (1e); arene = p-cymene, R = iso-propyl (2a), tert-butyl (2b). The complexes were fully characterized by 1H NMR and 13C NMR, UV–Vis and IR spectroscopies, elemental analyses, and the single-crystal X-ray structures of 2a and 2b have been determined. The single-crystal molecular structure revealed both compounds with a pseudo-octahedral geometry around the Ru(II) center, normally referred to as a piano stool conformation, with the pyridyl-imine as a bidentate N,N ligand. The activity of all complexes in the transfer hydrogenation of cyclohexanone in the presence of NaOH and iso-propanol is reported, the compounds showing turnover numbers of close to 1990 and high conversions. Complex 2b was also shown to be very effective for a range of aliphatic and cyclic ketones, giving conversions of up to 100 %.  相似文献   

18.
Polarograms for the reduction of glycinate complexes of palladium(II) (5 × 10?5 M) are obtained in equilibrium solutions of pH 0.8–3.0 with different protonated-glycine concentrations c Hgly (supporting electrolyte, 0.5 M NaClO4). It is established that the irreversible wave of reduction of complexes Pd(gly)2 corresponds to the diffusion limiting current I d (2) . A similar wave at pH 1.5 and c Hgly = 0.005 M, as well as at pH 1.0 and c Hgly = 0.05–0.5 M is preceded by the diffusion limiting current I d (1) . Values of the I d (2) /I d (1) ratio are close to the ratio between equilibrium concentrations of Pd(gly)2] and [Pdgly+], calculated using the step stability constant for Pd(gly)2. This fact testifies to the reduction of complexes Pdgly+ in the vicinity of I d (1) and complexes Pd(gly)2, in the vicinity of I d (2) . At pH 0.8–1.2 and [H2gly+] = 1 × 10?4 to 5 × 10?3 there is observed the diffusion-kinetic limiting current of the first wave I 1 (1) , which increases with increasing [H+] and decreasing [H2gly+]. The nature of the slow preceding chemical stage that occurs during the reduction of complexes Pdgly+ is discussed.  相似文献   

19.
The reaction of potassium salts of N-thiocarbamoylamidophosphates RC(S)NHP(O)(OPr-i)2X [X = PhNH, p-MeOPhNH, p-BrPhNH, i-PrNH, t-BuNH, Et2N, C5H10N, OC4H8N, C6H11NH] with Zn(II) cation gives complexes of the composition Zn(L-O,S)2. The Cd(II) complexes could not be isolated under analogous conditions because of their hydrolytic lability. The reaction of thioureas (X = PhNH, p-MeOPhNH) with Cd(II) acetate in DMF provides stable solvato complexes of the composition Cd(DMF)2L2. The structure of the resulting compounds was studied by means of IR, 1H, and 31P NMR spectroscopy and EI and ESI mass spectrometry.  相似文献   

20.
The formation of mixed-ligand complexes in the M(II)–Nta and Ida–L systems (M = Co, Zn; L = His, Orn, Lys, Gly, Im, en), where Ida and Nta are the residues of iminodiacetic and nitrilotriacetic acids, was studied by pH-metry, calorimetry, and NMR spectroscopy. The thermodynamic parameters (logK, Δ r G0, Δ r H, Δ r S) of formation for these complexes were determined at 298.15 K and an ionic strength I = 0.5 (KNO3). The most probable pattern of coordination between a complexone and an amino acid in mixed-ligand complexes was revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号