共查询到20条相似文献,搜索用时 15 毫秒
1.
The five-coordinated iron-thiolate nitrosyl complexes [(NO)Fe(S,S-C6H3R)2]- (R = H (1), m-CH3 (2)), [(NO)Fe(S,S-C6H2-3,6-Cl2)2]- (3), [(NO)Fe(S,S-C6H3R)2]2- (R = H (10), m-CH3 (11)), and [(NO)Fe(S,S-C6H2-3,6-Cl2)2]2- (12) have been isolated and structurally characterized. Sulfur oxygenation of iron-thiolate nitrosyl complexes 1-3 containing the {Fe(NO)}6 core was triggered by O2 to yield the S-bonded monosulfinate iron species [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]- (R = H (4), m-CH3 (5)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2(2-) (6), respectively. In contrast, attack of O2 on the {Fe(NO)}7 complex 10 led to the formation of complex 1 accompanied by the minor products, [Fe(S,S-C6H4)2]2(2-) and [NO3]- (yield 9%). Reduction of complexes 4-6 by [EtS]- in CH3CN-THF yielded [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]2- (R = H (7), m-CH3 (8)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2- (9) along with (EtS)2 identified by 1H NMR. Compared to complex 10, complexes 7-9 with the less electron-donating sulfinate ligand coordinated to the {Fe(NO)}7 core were oxidized by O2 to yield complexes 4-6. Obviously, the electronic perturbation of the {Fe(NO)}7 core caused by the coordinated sulfinate in complexes 7-9 may serve to regulate the reactivity of complexes 7-9 toward O2. The iron-sulfinate nitrosyl species with the {Fe(NO)}6/7 core exhibit the photolabilization of sulfur-bound [O] moiety. Complexes 1-4-7-10 (or 2-5-8-11 and 3-6-9-12) are interconvertible under sulfur oxygenation, redox processes, and photolysis, respectively. 相似文献
2.
van Pelt S Zhang M Otten LG Holt J Sorokin DY van Rantwijk F Black GW Perry JJ Sheldon RA 《Organic & biomolecular chemistry》2011,9(8):3011-3019
In this study a diverse range of purified cobalt containing nitrile hydratases (NHases, EC 4.2.1.84) from Rhodopseudomonas palustris HaA2 (HaA2), Rhodopseudomonas palustris CGA009 (009), Sinorhizobium meliloti 1021 (1021), and Nitriliruptor alkaliphilus (iso2), were screened for the first time for their enantioselectivity towards a broad range of chiral nitriles. Enantiomeric ratios of >100 were found for the NHases from HaA2 and CGA009 on 2-phenylpropionitrile. In contrast, the Fe-containing NHase from the well-characterized Rhodococcus erythropolis AJ270 (AJ270) was practically aselective with a range of different α-phenylacetonitriles. In general, at least one bulky group in close proximity to the α-position of the chiral nitriles seemed to be necessary for enantioselectivity with all NHases tested. Nitrile groups attached to a quaternary carbon atom were only reluctantly accepted and showed no selectivity. Enantiomeric ratios of 80 and >100 for AJ270 and iso2, respectively, were found for the pharmaceutical intermediate naproxennitrile, and 3-(1-cyanoethyl)benzoic acid was hydrated to the corresponding amide by iso2 with an enantiomeric ratio of >100. 相似文献
3.
4.
5.
Oxaellipticine has been synthesized from 1,4-dimethyldibenzofuran, by converting it to the 2-aldehyde, forming the Schiff's base with aminoacetaldehyde diethyl acetal, and cyclizing this with 105%superphosphoric acid. Alternatively, tetrahydrodimethyldibenzofuran was formylated mainly at the 3-position, and the 3-(2-nitrovinyl) derivative of the 3-aldehyde, by hydride reduction, then Bischler-Napieralski cyclization of the 3-(2-formamidoethyl) derivative, afforded hexahydrooxaellipticine, which could be aromatized only in poor yield. Isooxaellipticine, the pyrido-A' positional isomer, was similarly prepared from the nitrovinyl derivative of 1,4-dimethyl-2-dibenzofurancarboxaldehyde, through cyclization of the formamidoethyl intermediate and aromatization of the dihydro product. Likewise, isothiaellipticine was obtained from 1,4-dimethyl-2-dibenzothiophenecarboxaldehyde. 相似文献
6.
7.
Although the non-covalent interactions between proteins and salts contributing to the Hofmeister effects have been generally mapped, there are many questions regarding the specifics of these interactions. We report here studies involving the small protein ubiquitin and salts of polarizable anions. These studies reveal a complex interplay between the reverse Hofmeister effect at low pH, the salting-in Hofmeister effect at higher pH, and six anion binding sites in ubiquitin at the root of these phenomena. These sites are all located at protuberances of preorganized secondary structure, and although stronger at low pH, are still apparent when ubiquitin possesses no net charge. These results demonstrate the traceability of these Hofmeister phenomena and suggest new strategies for understanding the supramolecular properties of proteins.Studying the supramolecular properties of Ubiquitin reveals six anion binding sites that contribute to the reverse Hofmeister effect at low pH and the salting-in Hofmeister effect at higher pH. 相似文献
8.
Albrecht M Gossage RA Lutz M Spek AL van Koten G 《Chemistry (Weinheim an der Bergstrasse, Germany)》2000,6(8):1431-1445
A series of square-planar platinum(II) complexes of the N,C,N'-terdentate-coordinating monoanionic "pincer" ligand, [PtX(4-E-2,6-[CH2NRR']2-C6H2](X=Cl, Br, I, tolyl; R, R'=Et, Me; E=H, OH, OSiMe2tBu) has been prepared. In the presence of sulfur dioxide, these complexes spontaneously adsorb this gas to form penta-coordinated adducts. Solid-state crystal-structure analyses of the SO2 adducts 8c (X=I, R=R=Me, E=OSiMe2tBu) and 11 (X=Cl, R=R'=Me, E=OH) show a square-pyramidal geometry around the metal center with SO2 in the apical position. Most interestingly. the adduct 11 forms similar Pt-Cl... H-O hydrogen-bonded alpha-type networks as the corresponding SO2-free complex 5. The conservation of the supramolecular information (hydrogen-bonded self-assembly) throughout a reaction (SO2 adsorption) is unprecedented in crystal engineering. Adduct formation in the solid state or in solution is fast and reversible and is indicated by a characteristic color change of the material from colorless to bright orange. Since facile methods have been developed to remove SO2 from the adducts and to regenerate the square-planar starting complexes, these complexes fulfill several essential prerequisites of sensor materials for repeated diagnostic SO2 detection. The platinum sensors have been found to be highly selective for sulfur dioxide and particularly sensitive for submilimolar to molar gas quantities. Their response capacity is tuneable by electronic and steric modifications of the ligand array by introduction of, for example, different substituents on the nitrogen donors. The periphery of dendrimers is shown to be an appropriate macromolecular support for anchoring the detection-active sites, thus allowing full recovery of the sensor materials for repeated use. By using this concept, metallo-dendrimers 3 and 15 have been prepared. Owing to the dendritic connectivity, these sensors are suitable for repetitive qualitative and quantitative detection of small amounts of SO2. 相似文献
9.
10.
Gary S. Groenewold Wibe A. de Jong Jos Oomens Michael J. Van Stipdonk 《Journal of the American Society for Mass Spectrometry》2010,21(5):719-727
Tris-carboxylate complexes of uranyl [UO2]2+ with acetate and benzoate were generated using electrospray ionization mass spectrometry, and then isolated in a Fourier
transform ion cyclotron resonance mass spectrometer. Wavelength-selective infrared multiple photon dissociation (IRMPD) of
the tris-acetato uranyl anion resulted in a redox elimination of an acetate radical, which was used to generate an IR spectrum that
consisted of six prominent absorption bands. These were interpreted with the aid of density functional theory calculations
in terms of symmetric and antisymmetric −CO2 stretches of the monodentate and bidentate acetate, CH3 bending and umbrella vibrations, and a uranyl O—U—O asymmetric stretch. The comparison of the calculated and measured IR
spectra indicated that the predominant conformer of the tris-acetate complex contained two acetate ligands bound in a bidentate fashion, while the third acetate was monodentate. In similar
fashion, the tris-benzoate uranyl anion was formed and photodissociated by loss of a benzoate radical, enabling measurement of the infrared
spectrum that was in close agreement with that calculated for a structure containing one monodentate and two bidentate benzoate
ligands. 相似文献
11.
12.
Khripun AV Kukushkin VY Selivanov SI Haukka M Pombeiro AJ 《Inorganic chemistry》2006,45(13):5073-5083
The reaction of platinum(IV) complex trans-[PtCl4(EtCN)2] with pyrazoles 3,5-RR'pzH (R/R' = H/H, Me/H, Me/Me) leads to the formation of the trans-[PtCl4{NH=C(Et)(3,5-RR'pz)}2] (1-3) species due to the metal-mediated nitrile-pyrazole coupling. Pyrazolylimino complexes 1-3 (i) completely convert to pyrazole complexes cis-[PtCl4(3,5-RR'pzH)2] by elimination of EtCN upon reflux in a CH2Cl2 solution or upon heating in the solid state; (ii) undergo exchange at the imino C atom with another pyrazole different from that contained in the pyrazolylimino ligand. The reaction of trans-[PtIICl2(EtCN)2] and 3,5-RR'pzH, conducted under conditions similar to those for trans-[PtIVCl4(EtCN)2], is much less selective, and the composition of the products strongly depends on the pyrazole employed: (a) with pzH, the reaction gives a mixture of three products, i.e., [PtCl2NH=C(Et)pz-kappa2N,N}] (4), [PtCl(pzH){NH=C(Et)pz-kappa2N,N}]Cl (5), and [Pt(pzH)2{NH=C(Et)pz-kappa2N,N}]Cl2 (6) (complexes 5 and 6 are rather unstable and gradually transform to trans-[PtCl2(pzH2] and [Pt(pzH)(4)]Cl(2) and free EtCN); (b) with 3,5-Me(2)pzH, the reaction leads to the formation of [PtCl2NH=C(Et)(3,5-Me2pz)-kappa2N,N}] (7) and [PtCl(3,5-Me2pzH)3]Cl (8); (c) in the case of asymmetric pyrazole 3(5)-MepzH, which can be added to EtCN and/or bind metal centers by any of the two nonequivalent nitrogen sites, a broad mixture of currently unidentified products is formed. The reduction of 1-3 with Ph3P=CHCO2Me in CHCl3 allows for the formation of corresponding platinum(II) compounds trans-[PtCl2{NH=C(Et)(3,5-RR'pz)}2] (9-11). Ligands NH=C(Et)(3,5-RR'pz) (12-14) were almost quantitatively liberated from 9-11 with 2 equiv of 1,2-bis-(diphenylphosphino)ethane in CDCl3, giving free imines 12-14 in solution and the precipitate of trans-[Pt(dppe)2](Cl)2. Pyrazolylimines 12-14 undergo splitting in CDCl3 solution at 20-25 degrees C for ca. 20 h to furnish the parent propiononitrile and the pyrazole 3,5-RR'pzH, but they can be synthetically utilized immediately after the liberation. 相似文献
13.
Dell'Amico DB Labella L Marchetti F Samaritani S 《Dalton transactions (Cambridge, England : 2003)》2012,41(4):1389-1396
The syntheses of the complexes [PtCl(2)(NCR)L] [R = Me, Et; L = PPh(3); R = Et, L = Py, CO] and [PtCl{(κ(2)-P,C)P(OC(6)H(4))(OPh)(2)}(NCEt)] are described starting from the easily available [PtCl(2)(NCR)(2)]. The stability of the products under different experimental conditions is discussed as well as their use as precursors to dinuclear complexes [Pt(μ-Cl)ClL](2). The crystal and molecular structures of cis-[PtCl(2)(NCEt)(PPh(3))], [SP-4-2]-[PtCl{(κ(2)-P,C)P(OC(6)H(4))(OPh)(2)}(NCEt)] and trans-[Pt(μ-Cl){(κ(2)-P,C)P(OC(6)H(4))(OPh)(2)}](2) are reported. 相似文献
14.
Takiya J. Ahmed Spring Melody M. Knapp David R. Tyler 《Coordination chemistry reviews》2011,255(7-8):949-974
Acrylic monomers are a significant part of the global economy, contributing to the manufacture of over a billion tons of diverse polymeric consumer products every year. The development of more efficient, greener methods to manufacture this highly demanded class of compounds is an important goal in the realization of a sustainable chemical industry. The pursuit of environmentally benign production processes has inspired a rich body of industrial and academic research on methods for the catalytic hydration of nitriles, and this review surveys both established and newer methods of generating acrylic amides, acids, and esters from nitrile and cyanohydrin substrates. The review also examines synthetic and mechanistic studies of homogeneously catalyzed nitrile hydration reactions with an emphasis on explicating the parameters that impact catalyst performance. The final section is a discussion of catalyst properties, gleaned from the mechanistic studies, that will be useful in designing the next generation of nitrile hydration catalysts. 相似文献
15.
J C Noveron M M Olmstead P K Mascharak 《Journal of the American Chemical Society》2001,123(14):3247-3259
As part of our work on models of the iron(III) site of Fe-containing nitrile hydratase, a designed ligand PyPSH(4) with two carboxamide and two thiolate donor groups has been synthesized. Reaction of (Et(4)N)[FeCl(4)] with the deprotonated form of the ligand in DMF affords the mononuclear iron(III) complex (Et(4)N)[Fe(III)(PyPS)] (1) in high yield. The iron(III) center is in a trigonal bipyramidal geometry with two deprotonated carboxamido nitrogens, one pyridine nitrogen, and two thiolato sulfurs as donors. Complex 1 is stable in water and binds a variety of Lewis bases at the sixth site at low temperature to afford green solutions with a band around 700 nm. The iron(III) centers in these six-coordinate species are low-spin and exhibit EPR spectra much like the enzyme. The pK(a) of the water molecule in [Fe(III)(PyPS)(H(2)O)](-) is 6.3 +/- 0.4. The iron(III) site in 1 with ligated carboxamido nitrogens and thiolato sulfurs does not show any affinity toward nitriles. It thus appears that at physiological pH, a metal-bound hydroxide promotes hydration of nitriles nested in close proximity of the iron center in the enzyme. Redox measurements demonstrate that the carboxamido nitrogens prefer Fe(III) to Fe(II) centers. This fact explains the absence of any redox behavior at the iron site in nitrile hydratase. Upon exposure to limited amount of dioxygen, 1 is converted to the bis-sulfinic species. The structure of the more stable O-bonded sulfinato complex (Et(4)N)[Fe(III)(PyP[SO(2)](2))] (2) has been determined. Six-coordinated low-spin cyanide adducts of the S-bonded and the O-bonded sulfinato complexes, namely, Na(2)[Fe(III)(PyP[SO(2)](2))(CN)] (4) and (Et(4)N)(2)[Fe(III)(PyP[SO(2)](2))(CN)] (5), afford green solutions in water and other solvents. The iron(II) complex (Et(4)N)(2)[Fe(II)(PyPS)] (3) has also been isolated and structurally characterized. 相似文献
16.
Hayashi T Caranto JD Matsumura H Kurtz DM Moënne-Loccoz P 《Journal of the American Chemical Society》2012,134(15):6878-6884
Flavodiiron proteins (FDPs) play important roles in the microbial nitrosative stress response in low-oxygen environments by reductively scavenging nitric oxide (NO). Recently, we showed that FMN-free diferrous FDP from Thermotoga maritima exposed to 1 equiv NO forms a stable diiron-mononitrosyl complex (deflavo-FDP(NO)) that can react further with NO to form N(2)O [Hayashi, T.; Caranto, J. D.; Wampler, D. A; Kurtz, D. M., Jr.; Mo?nne-Loccoz, P. Biochemistry 2010, 49, 7040-7049]. Here we report resonance Raman and low-temperature photolysis FTIR data that better define the structure of this diiron-mononitrosyl complex. We first validate this approach using the stable diiron-mononitrosyl complex of hemerythrin, Hr(NO), for which we observe a ν(NO) at 1658 cm(-1), the lowest ν(NO) ever reported for a nonheme {FeNO}(7) species. Both deflavo-FDP(NO) and the mononitrosyl adduct of the flavinated FPD (FDP(NO)) show ν(NO) at 1681 cm(-1), which is also unusually low. These results indicate that, in Hr(NO) and FDP(NO), the coordinated NO is exceptionally electron rich, more closely approaching the Fe(III)(NO(-)) resonance structure. In the case of Hr(NO), this polarization may be promoted by steric enforcement of an unusually small FeNO angle, while in FDP(NO), the Fe(III)(NO(-)) structure may be due to a semibridging electrostatic interaction with the second Fe(II) ion. In Hr(NO), accessibility and steric constraints prevent further reaction of the diiron-mononitrosyl complex with NO, whereas in FDP(NO) the increased nucleophilicity of the nitrosyl group may promote attack by a second NO to produce N(2)O. This latter scenario is supported by theoretical modeling [Blomberg, L. M.; Blomberg, M. R.; Siegbahn, P. E. J. Biol. Inorg. Chem. 2007, 12, 79-89]. Published vibrational data on bioengineered models of denitrifying heme-nonheme NO reductases [Hayashi, T.; Miner, K. D.; Yeung, N.; Lin, Y.-W.; Lu, Y.; Mo?nne-Loccoz, P. Biochemistry 2011, 50, 5939-5947 ] support a similar mode of activation of a heme {FeNO}(7) species by the nearby nonheme Fe(II). 相似文献
17.
18.
Isomerization and oxygen atom transfer reactivity in oxo-Mo complexes of relevance to molybdoenzymes
Both dioxo Mo(VI) and mono-oxo Mo(V) complexes of a sterically restrictive N2O heteroscorpionate ligand are found to exist as cis and trans isomers. The thermodynamically stable isomer differs for the two oxidation states, but in each case, we have isolated the kinetically labile isomer and followed its isomerization to the thermodynamically stable form. The Mo(VI) complex is more stable in the cis geometry and isomerizes more than 6 times faster than the Mo(V) complex, which prefers the trans geometry. In OAT reactions with PPh3, the trans isomer of the dioxo-Mo(VI) reacts approximately 20 times faster than the cis isomer. Thus, there are both oxidation state and donor atom dependent differences in isomeric stability and reactivity that could have significant functional implications for molybdoenzymes such as DMSO reductase. 相似文献
19.
The adverse effect to the inner ear of aminoglycosides, drugs widely administered for the treatment of serious infections, appears to result from the interaction of these drugs with Cu(II) or Fe(II)/Fe(III) ions. To understand more completely the metal-induced side effects of one such antibiotic, gentamicin, we studied copper(II) coordination to gentamicin C1a by potentiometry, UV-vis, CD, and EPR spectroscopies, and ESI mass spectrometry. Only monomeric complexes of the CuH(n)L stoichiometry, with n ranging from 3 to -2, were detected over the pH range of 4-12. CuH(3)L and CuH(2)L complexes exhibit the same coordination mode, binding copper(II) through the amino nitrogen atom and a deprotonated alcoholic oxygen atom of the garosamine ring. In the CuHL and CuL complexes a second amino nitrogen atom of the purpurosamine ring participates in central ion coordination. Finally, the additional axial binding of the deprotonated oxygen of the hydroxyl group of the 2-deoxystreptamine moiety occurs in the CuH(-)(1)L and CuH(-)(2)L complexes. Interactions of the Cu(II)-gentamicin-H(2)O(2) system at pH 7.4 with N,N-dimethyl-p-nitrosoaniline, arachidonic acid, and plasmid DNA confirmed that gentamicin complexes facilitate oxidative reactions leading to peroxidation of arachidonic acid and scission of double-stranded DNA mediated by copper-bound reactive oxygen species. However, the stability constants of Cu(II)-gentamicin complexes are inferior to the binding constants of copper(II) complexes with other components of human serum or cells. Computer simulations of copper(II) distribution in the human blood plasma showed that the concentration of gentamicin would have to be at impossible levels (100 M) before a significant fraction of Cu(II) ions would be bound to gentamicin. Further, once introduced into aqueous solution, histidine replaces gentamicin in Cu(II)-gentamicin complexes. Therefore, Cu(II)-gentamicin complexes might not exist under physiological conditions. 相似文献