首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
田圆圆  李甲  胡泽英  王志鹏  方棋洪 《中国物理 B》2017,26(12):126802-126802
The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics(MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up at the interface and then the plastic deformation of the Ag matrix occurs due to the nucleation and emission of dislocations from the interface and the dislocation propagation through the interface. In addition, it is found that the incipient plastic deformation of Cu/Ag multilayers is postponed, compared with that of bulk single-crystal Cu. The plastic deformation of Cu/Ag multilayers is affected by the lattice mismatch more than by the difference in stacking fault energy(SFE) between Cu and Ag. The dislocation pile-up at the interface is determined by the obstruction of the mismatch dislocation network and the attraction of the image force. Furthermore, this work provides a basis for further understanding and tailoring metal multilayers with good mechanical properties, which may facilitate the design and development of multilayer materials with low cost production strategies.  相似文献   

2.
3.
The occurrence of plastic instabilities which are accompanied by a significant heat release is a typical feature of the plastic behaviour of metals deformed at sufficiently low temperature. This phenomenon may be studied within the framework of a dislocation-dynamical model. The influence of the heat which is released by the deformation process on the dislocation velocity, and thus on the deformation dynamics, is taken into account. In particular, the influence of the spatial coupling which arises from heat conduction on the spatio-temporal behaviour of the deformation process is studied.  相似文献   

4.
New shapes of silicon microelements which can be partially situated outside the wafer plane can be created by the combination of wet anisotropic etching and plastic deformation at high temperatures. Therefore new applications become possible. In order to characterize the plastic behaviour of the silicon microelements bending tests in the 3-point manner were carried out at monocrystalline, differently orientated beams with variation of temperature, bending rate and maximum bending. Additionally the fracture strength at room temperature of deformed and undeformed beams was determined. The dislocation content introduced during the deformation was analysed by the etch pit technique. The deformation is characterized by the formation of dislocations, a pronounced yield point effect, and an orientation-dependent strengthening. The yield points depend strongly on temperature. Because of the strong dependence on the deformation parameters it is possible to create the same amount of irreversible deformation at different stages of the stress–bend diagrams resulting in different dislocation contents and therefore different properties. The analysis of the fracture strength values by means of the Weibull statistics shows a slightly decreased average fracture strength of the deformed material in comparison to the undeformed silicon but a strongly increased Weibull modulus. Received: 22 September 1998 / Accepted: 29 January 1999 / Published online: 28 April 1999  相似文献   

5.
ABSTRACT

In the paper, molecular dynamics simulation is applied to study the evolution and distribution of subsurface defects during nanoscale machining process of single-crystal copper. The chip-removal mechanism and the machined-surface-generative mechanism are examined through analysis of the dislocation evolution and atomic migration of the workpieces. The findings show that under different stresses and temperatures, the difference of the binding energy leads to a zoned phenomenon in the chip. Owing to elastic deformation, some of the dislocations could be recovered and form surface steps; moreover, the work hardening of the workpiece can be achieved on account of generation of twin boundaries, Lomer-Cottrell dislocations, and stacking fault tetrahedra (SFT) by plastic deformation. A process of evolution of an immobile dislocation group containing stair-rod dislocations into SFT is discovered, which is different from the traditional Silcox-Hirsch mechanism. Furthermore, a growth oscillation phenomenon, which corresponding stacking fault planes growth and retraction during the formation of the stable SFT, is discussed.  相似文献   

6.
Nanocrystalline (nc) materials are characterized by a typical grain size of 1-100nm. The uniaxial tensile deformation of computer-generated nc samples, with several average grain sizes ranging from 5.38 to 1.79nm, is simulated by using molecular dynamics with the Finnis-Sinclair potential. The influence of grain size and temperature on the mechanical deformation is studied in this paper. The simulated nc samples show a reverse Hall-Petch effect. Grain boundary sliding and motion, as well as grain rotation are mainly responsible for the plastic deformation. At low temperatures, partial dislocation activities play a minor role during the deformation. This role begins to occur at the strain of 5%, and is progressively remarkable with increasing average grain size. However, at elevated temperatures no dislocation activity is detected, and the diffusion of grain boundaries may come into play.  相似文献   

7.
Y. Wang  D. Connétable 《哲学杂志》2019,99(10):1184-1205
This paper studies the effect of a plastic shear on the tetrahedral vs. octahedral site stability for hydrogen, in aluminium. Based on Density Functional Theory calculations, it is shown that the tetrahedral site remains the most stable site. It transforms into the octahedral site of the local hexagonal compact structure of the intrinsic stacking fault. The imperfect stacking is slightly attractive with respect to a regular lattice site. It is also shown that the shearing process involves a significant decrease of the energetic barrier for hydrogen jumps, at half the value of the Shockley partial Burgers vector, but not in the intrinsic stacking fault. These jumps involve a displacement component perpendicular to the shearing direction which favours an enhancement of hydrogen diffusion along edge dislocation cores (pipe diffusion). The magnitude of the boost in the jump rate in the direction of the dislocation line, according to Transition State Theory and taking into account the zero point energy correction, is of the order of a factor 50, at room temperature. First Passage Time Analysis is used to evaluate the effect on diffusion which is significant, by only at the nanoscale. Indeed, the common dislocation densities are too small for these effects (trapping, or pipe diffusion) to have a signature at the macroscopic level. The observed drop of the effective diffusion coefficient could therefore be attributed to the production of debris during plastic straining, as proposed in the literature.  相似文献   

8.
Subgrains formed in α-uranium during the β → α phase transformation are believed to be dislocation cells. According to this assumption, the large transformation strains give rise to plastic deformation. The dislocations taking part in the plastic deformation are arranged into dislocation boundaries. In order to check this preposition the yield surface of α-uranium at the transformation temperature and the stresses in a growing α particle have been calculated. Due to the low symmetry of α-uranium, only five slip systems are activated. This allows to find a unique solution for the relative activity of each slip system. Thus, the selection of active slip systems without ambiguity resulting form low crystallographic symmetry serves as an important advantageous property for the study of the fundamentals of plastic deformation. Structural TEM observations are in progress in order to gather experimental verification of the plasticity calculations.  相似文献   

9.
Mechanoluminescence (ML) emission from coloured alkali halide crystals takes place during their elastic and plastic deformation. The ML emission during the elastic deformation occurs due to the mechanical interaction between dislocation segments and F-centres, and the ML emission during the plastic deformation takes place due to the mechanical interaction between the moving dislocations and F-centres. In the elastic region, the ML intensity increases linearly with the strain or deformation time, and in this case, the saturation region could not be observed because of the beginning of the plastic deformation before the start of the saturation in the ML intensity. In the plastic region, initially the ML intensity also increases linearly with the strain or deformation time, and later on, it attains a saturation value for large deformation. When the deformation is stopped, initially the ML intensity decreases at a fast rate; later on, it decreases at a slow rate. The decay time for the fast decrease of the ML intensity gives the relaxation time of dislocation segments or pinning time of the dislocations, and the decay time of the slow decrease of the ML intensity gives the diffusion time of holes in the crystals. The saturation value of the ML intensity increases linearly with the strain rate and also with the density of F-centres in the crystals. Initially, the saturation value of the ML intensity increases with increasing temperature, and for higher temperatures the ML intensity decreases with increasing temperature. Therefore, the ML intensity is optimum for a particular temperature of the crystals. From the ML measurements, the relaxation time of dislocation segments, pinning time of dislocations, diffusion time of holes and the energy gap between the bottom of the acceptor dislocation band and interacting F-centre level can be determined. Expressions derived for the ML induced by elastic and plastic deformation of coloured alkali halide crystals at fixed strain rates indicates that the ML intensity depends on the strain, strain rate, density of colour centres, size of crystals, temperature, luminescence efficiency, etc. A good agreement is found between the theoretical and experimental results.  相似文献   

10.
脆性断裂的统计理论   总被引:5,自引:0,他引:5       下载免费PDF全文
邢修三 《物理学报》1966,22(4):487-497
本文试图从位错理论出发来探索晶体脆性断裂的统计理论。脆性断裂过程,实质上是微裂缝在极小的范性形变过程中形成长大和传播的随机过程。本文导出了描述这种随机过程的微分方程,利用微裂缝形成长大的位错机理,解出了微裂缝大小的统计分布函数。文中给出了范性形变、加工硬化和活动位错源数目与微裂缝数目和大小之间的函数关系。过去研究脆性断裂时,范性变形只是含糊地包括在有效表面能之内,而加工硬化和活动位错源数目则一向被略去。从微裂缝大小的统计分布函数和微裂缝的传播条件,导出了强度的统计分布函数,从而求得了脆性断裂判别式、脆性断裂强度及脆性-范性转变温度。  相似文献   

11.
12.
E. Conforto  D. Mari  T. Cutard 《哲学杂志》2013,93(17):1717-1733
The evolution of the core–rim interface in Ti(C,?N)-based cermets containing Mo is studied by scanning electron microscopy and conventional and high-resolution transmission electron microscopy as a function of the annealing temperature. A heavily disordered zone on the nanometric scale is observed close to the interface with the core of Ti(C,?N) grains in as-sintered samples. It reorders after annealing at a high temperature. This disorder is correlated with the presence of Mo in the rim during sintering, which enhances the strength of the core–rim interface as a barrier for the diffusion of atoms from the core. It avoids the complete dissolution of small Ti(C,?N) grains from the original powder and limits the grain growth. It also acts as a barrier against dislocation movements during plastic deformation. This effect, as well as the small final grain size determined by the presence of Mo, contributes to the good mechanical properties of Mo-containing cermets at intermediate temperatures.  相似文献   

13.
A model based on the data available in the literature on the computer simulation of amorphous silicon has been proposed for describing the specific features of the plastic flow of amorphous covalent materials. The mechanism of plastic deformation involves homogeneous nucleation and growth of inclusions of a liquidlike phase under external shear stress. Such inclusions experience plastic shear, which is modeled by glide dislocation loops. The energy changes associated with the nucleation of these inclusions at room and increased temperatures have been calculated. The critical stress has been found, at which the barrierless nucleation of inclusions becomes possible. It has been shown that this stress decreases with an increase in temperature. According to the calculations, the heterogeneous (homogeneous) plastic flow of an amorphous material should be expected at relatively low (high) temperatures. Above the critical stress, the homogeneous flow is gradually replaced by the heterogeneous flow.  相似文献   

14.
谢红献  于涛  方伟  殷福星  Dil Faraz Khan 《中国物理 B》2016,25(12):126201-126201
Using molecular dynamics simulation method, the plastic deformation mechanism of Fe nanowires is studied by applying uniaxial tension along the [110] direction. The simulation result shows that the bcc-to-hcp martensitic phase transformation mechanism controls the plastic deformation of the nanowires at high strain rate or low temperature; however,the plastic deformation mechanism will transform into a dislocation nucleation mechanism at low strain rate and higher temperature. Furthermore, the underlying cause of why the bcc-to-hcp martensitic phase transition mechanism is related to high strain rate and low temperature is also carefully studied. Based on the present study, a strain rate-temperature plastic deformation map for Fe nanowires has been proposed.  相似文献   

15.
A theory of photothermal and photoacoustic effects is developed, on which the contactless diagnostics of semiconductors and semiconductor structures are based. Photothermal and photoacoustic effects are characterized quantitatively by the variable temperature of the specimen surface being exposed and by its shift. These quantities are computed in this paper for a homogeneous semiconductor and a semiconductor with a p-n junction with electron transfer processes, heat liberation as a result of thermalization and charge carrier recombination and their passage through the potential barrier as well as nonthermal deformation mechanisms due to nonequilibrium carrier interaction with the lattice in terms of the deformation potential and the reverse piezoeffect taken into account. It is shown that the surface temperature and shift (particularly the phase of these responses) carry information about such semiconductor characteristics as the charge carrier lifetime, the surface recombination rate, the deformation potential constants, the depth of p-n junction location, the height of its potential barrier, etc.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 119–131, June, 1987.  相似文献   

16.
徐爽  郭雅芳 《物理学报》2013,62(19):196201-196201
本文采用分子动力学方法模拟了纳米单晶铜薄膜在单向拉伸载荷作用下的塑性变形过程, 重点分析了空位型缺陷的形核过程和演化机理. 在模拟过程中, 采用镶嵌原子势描述原子间的相互作用. 模拟结果表明纳米铜薄膜中塑性变形起源于位错的表面形核, 而空位型缺陷的形核及演化都与晶体内部的位错运动密切相关. 空位型缺陷通常从位错割阶及层错交截处开始形核, 以单空位、层错四面体和不规则空位团等形式存在. 关键词: 纳米薄膜 塑性变形 空位 层错四面体  相似文献   

17.
A three-dimensional model is proposed for plastic deformation transfer through the amorphous intercrystallite phase in mechanically loaded nanoceramics. In this model, glide dislocation loops are pressed against amorphous intercrystallite boundaries by the applied local shear stress and initiate in them local longitudinal plastic shears, which causes emission of new glide dislocation loops into neighboring grains. The energy characteristics of these processes and the critical applied stress required for barrierless nucleation of grainboundary and intragrain loops are calculated. As an example, a nanoceramic based on cubic silicon carbide is considered. It is shown that plastic deformation transfer through the amorphous intercrystallite phase in such nanoceramics is energetically favorable and can occur athermically over wide ranges of values of the applied stress and the structural characteristics of the material.  相似文献   

18.
王宇  倪向贵  王秀喜  吴恒安 《中国物理》2003,12(9):1007-1010
The mechanical behaviour of carbon nanotubes is one of the basic research fields on the nanotube composites and nano machinery. Molecular dynamics is an effective way for investigating the behaviour of nano structure. The compression deformation of carbon nanotubes (CNTs) under different temperature is simulated, by using the Tersoff-Brenner potential to describe the interactions in CNTs. The results show that thermal fluctuations may induce the strained CNT to overcome the local energy barrier and develop the plastic deformation.  相似文献   

19.
The mechanical behavior and structural evolution of submicrocrystalline titanium in the course of deformation are investigated at room temperature. The possible mechanisms of deformation are analyzed. It is proved that the dislocation motion inside grains is responsible for the plastic flow.  相似文献   

20.

Within the dislocation–kinetic approach, based on the nonlinear kinetic equation for dislocation density, an attempt is made to consider the problem of a catastrophic plastic collapse of defect-free nanocrystals of metals with bcc lattice under their uniaxial compression with a constant deformation rate. Solutions of this equation were found in the form of moving waves, describing the dislocation multiplication process as the wave moves along the crystal from a local dislocation source. Comparison of the theory with the results of experiments on defect-free Mo nanocrystals showed that their ultrahigh strength at the initial stage of deformation is associated with a low rate of rise of crystal plastic deformation in comparison with the growth of its elastic component. The subsequent plastic collapse of crystal is caused by a sharp increasing the plastic component, ending with reaching the equality of elastic and plastic deformation rates.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号