首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axisymmetric problem of a nonhomogeneous elastic layer   总被引:3,自引:0,他引:3  
Summary The paper deals with a theoretical treatment of elastic behavior for a medium with nonhomogeneous materials property, which is defined by the relation , i.e., shear modulus of elasticity G varies with the dimensionless axial coordinate by the power product form, arbitrarily. Fundamental differential equation for such nonhomogeneous medium has been already proposed in [5]. It is given by a second-order partial differential equation. However, it was found that the fundamental equation is not sufficient in general to solve several kinds of boundary-value problems. On the other hand, it is shown in the present paper making use of the fundamental equations system for a nonhomogeneous medium, which has been proposed in our previous paper [7], it is possible to solve axisymmetric problems for a thick plate (layer) subjected to an arbitrarily distributed load or a concentrated load on its surfaces. Numerical calculations are carried out for several cases, taking into account the variation of the nonhomogeneous parameter m. The numerical results for displacements stress and components are shown in graphical form. Accepted for publication 25 March 1997  相似文献   

2.
This paper deals with the rational function approximation of the irrational transfer function G(s) = \fracX(s)E(s) = \frac1[(t0s)2m + 2z(t0s)m + 1]G(s) = \frac{X(s)}{E(s)} = \frac{1}{[(\tau _{0}s)^{2m} + 2\zeta (\tau _{0}s)^{m} + 1]} of the fundamental linear fractional order differential equation (t0)2m\fracd2mx(t)dt2m + 2z(t0)m\fracdmx(t)dtm + x(t) = e(t)(\tau_{0})^{2m}\frac{d^{2m}x(t)}{dt^{2m}} + 2\zeta(\tau_{0})^{m}\frac{d^{m}x(t)}{dt^{m}} + x(t) = e(t), for 0<m<1 and 0<ζ<1. An approximation method by a rational function, in a given frequency band, is presented and the impulse and the step responses of this fractional order system are derived. Illustrative examples are also presented to show the exactitude and the usefulness of the approximation method.  相似文献   

3.
 The problem of the self-similar boundary flow of a “Darcy-Boussinesq fluid” on a vertical plate with temperature distribution T w(x) = T +A·x λ and lateral mass flux v w(x) = a·x (λ−1)/2, embedded in a saturated porous medium is revisited. For the parameter values λ = 1,−1/3 and −1/2 exact analytic solutions are written down and the characteristics of the corresponding boundary layers are discussed as functions of the suction/ injection parameter in detail. The results are compared with the numerical findings of previous authors. Received on 8 March 1999  相似文献   

4.
We obtain the linear viscoelastic shear moduli of complex fluids from the time-dependent mean square displacement, <Δr 2(t)>, of thermally-driven colloidal spheres suspended in the fluid using a generalized Stokes–Einstein (GSE) equation. Different representations of the GSE equation can be used to obtain the viscoelastic spectrum, G˜(s), in the Laplace frequency domain, the complex shear modulus, G *(ω), in the Fourier frequency domain, and the stress relaxation modulus, G r (t), in the time domain. Because trapezoid integration (s domain) or the Fast Fourier Transform (ω domain) of <Δr 2(t)> known only over a finite temporal interval can lead to errors which result in unphysical behavior of the moduli near the frequency extremes, we estimate the transforms algebraically by describing <Δr 2(t)> as a local power law. If the logarithmic slope of <Δr 2(t)> can be accurately determined, these estimates generally perform well at the frequency extremes. Received: 8 September 2000/Accepted: 9 March 2000  相似文献   

5.
This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z = x + iy plane consisted of the simply connected open domain D + bounded by C and the open domain D outside C. (1) With f (z) assumed to be C n (n < ∞-times continuously differentiable) z ∈ D + and in a neighborhood of C, f (z) and its derivatives f (n) (z) are proved uniformly continuous in the closed domain D + = [D + + C]. (2) Cauchy’s integral formulas and their derivatives z ∈ D + (or z ∈ D ) are proved to converge uniformly in D + (or in D = [D +C]), respectively, thereby rendering the integral formulas valid over the entire z-plane. (3) The same claims (as for f (z) and J[ f (z)]) are shown extended to hold for the complement function F(z), defined to be C n z ∈ D and about C. (4) The uniform convergence theorems for f (z) and F(z) shown for arbitrary contour C are adapted to find special domains in the upper or lower half z-planes and those inside and outside the unit circle |z| = 1 such that the four general- ized Hilbert-type integral transforms are proved. (5) Further, the singularity distribution of f (z) in D is elucidated by considering the direct problem exemplified with several typ- ical singularities prescribed in D . (6) A comparative study is made between generalized integral formulas and Plemelj’s formulas on their differing basic properties. (7) Physical sig- nificances of these formulas are illustrated with applicationsto nonlinear airfoil theory. (8) Finally, an unsolved inverse problem to determine all the singularities of Cauchy function f (z) in domain D , based on the continuous numerical value of f (z) z ∈ D + = [D + + C], is presented for resolution as a conjecture.  相似文献   

6.
This is a series of studies on Wu’s conjecture and on its resolution to be presented herein. Both are devoted to expound all the comprehensive properties of Cauchy’s function f(z) (z = x + iy) and its integral J[f(z) ] ≡(2πi) -1 C f(t)(t z) -1dt taken along the unit circle as contour C,inside which(the open domain D+) f(z) is regular but has singularities distributed in open domain Doutside C. Resolution is given to the inverse problem that the singularities of f(z) can be determined in analytical form in terms of the values f(t) of f(z) numerically prescribed on C(|t| = 1) ,as so enunciated by Wu’s conjecture. The case of a single singularity is solved using complex algebra and analysis to acquire the solution structure for a standard reference. Multiple singularities are resolved by reducing them to a single one by elimination in principle,for which purpose a general asymptotic method is developed here for resolution to the conjecture by induction,and essential singularities are treated with employing the generalized Hilbert transforms. These new methods are applicable to relevant problems in mathematics,engineering and technology in analogy with resolving the inverse problem presented here.  相似文献   

7.
When a crack Γ s propagates in an elastic medium the stress intensity factors evolve with the tip x(s) of Γ s . In this paper we derive formulae which describe the evolution of these stress intensity factors for a homogeneous isotropic elastic medium under plane strain conditions. Denoting by ψ=ψ(x,s) the stress potential (ψ is biharmonic and has zero traction along the crack Γ s ) and by κ(s) the curvature of the crack at the tip x(s), we prove that the stress intensity factors A 1(s), A 2(s), as functions of s, satisfy:
where , are stress intensity factors of the tangential derivative of in the polar coordinate system at x(s) with θ=0 in the direction of the crack at x(s). The case of antiplane shearing is also briefly considered; in this case ψ is harmonic.  相似文献   

8.
The field measurements and numerical results for intermittent flow regime in a sandy soil show that the time distributions of the soil water flux q(z, t), and the soil water content θ(z, t)at various depths are periodic in nature, where t is time and z is the depth (i.e., at the surface z = 0 and at depths z = − 5, − 10, − 15 cm, etc). The period of q(z, t) and θ(z, t) variations are generally determined by the sum of the duration of pulse and the duration between the initiation of two consecutive pulses of water at the soil surface. Fourier series models have been given for q(z, t) and θ(z, t) variations. The predicted Fourier results for these variations have been compared with the experimentally verified numerical results—designated as observed values. The results show that the amplitudes of these variations were damped exponentially with depth, and the phase shift increased linearly with depth.  相似文献   

9.
It is shown that, among anisotropic elastic materials, only certain orthotropic and hexagonal materials can have Young modulus E(n) independent of the direction n or the shear modulus G(n,m) independent of n and m. Thus the direction surface for E(n) can be a sphere for certain orthotropic and hexagonal materials. The structure of the elastic compliance for these materials is presented, and condition for identifying if the material is orthotropic or hexagonal is given. We also study the case in which n of E(n) and n, m of G(n,m) are restricted to a plane. When E(n) is a constant on a plane so are G(n,m) and Poisson's ratio ν(n,m). The converse, however, does not necessarily hold. A plane on which E(n) is a constant can exist for all anisotropic elastic materials. In particular, existence of such a plane is assured for trigonal, hexagonal and cubic materials. In fact there are four such planes for a cubic material. For these materials, not only E(n) is a constant, two other Young's moduli, the three shear moduli and the six Poisson's ratio on the plane are also constant.  相似文献   

10.
Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio ν at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle ϕ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of ϕ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2≤a/c≤1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded center-elliptical crack front field, and a two-parameter K-Tz principle is proposed. The project supported by the National Natural Science Foundation of China (50275073) The English text was polished by Keren Wang.  相似文献   

11.
The analysis of laminar mixed convection in boundary layers adjacent to a vertical, continuously stretching sheet has been presented. The velocity and temperature of the sheet were assumed to vary in a power-law form, that is, u w (x)=Bx m and T w (x)−T =Ax n . In the presence of buoyancy force effects, similarity solutions were reported for the following two cases: (a) n=0 and m=0.5, which corresponds to an isothermal sheet moving with a velocity of the form u w =Bx 0.5 and (b) n=1 and m=1, which corresponds to a continuous, linearly stretching sheet with a linear surface temperature distribution, i.e. T w T =Ax. Formulation of the present problem shows that the heat transfer characteristics depends on four governing parameters, namely, the velocity exponent parameter m, the temperature exponent parameter n, the buoyancy force parameter G *, and Prandtl number of the fluid. Numerical solutions were generated from a finite difference method. Results for the local Nusselt number, the local friction coefficient, and temperature profiles are presented for different governing parameters. Effects of buoyancy force and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Received on 17 July 1997  相似文献   

12.
We study the Cahn-Hilliard energy E ɛ(u) over the unit square under the constraint of a constant mass m with (ɛ > 0) and without ɛ= 0) interfacial energy. Minimizers of E 0(u) have no preferred pattern and we select patterns via sequences of conditionally critical points of E ɛ(u) converging to minimizers as ɛ tends to zero. Those critical points are not minimizers if the singular limit has no minimal interface. We obtain them by a global bifurcation analysis of the Euler-Lagrange equations for E ɛ(u) where the mass m is the bifurcation parameter. We make use of the symmetry of the unit square, and the elliptic maximum principle, in turn, implies that the location of maxima and minima is fixed for all solutions on global branches. This property is used to guarantee the existence of a singular limit and to verify the Weierstrass-Erdmann corner condition which proves its minimizing property. Accepted January 21, 2000?Published online November 24, 2000  相似文献   

13.
We establish an existence principle for the impulsive periodic boundary-value problem {fx029-01}, where gC(0, ∞) can have a strong singularity at the origin. Furthermore, we assume that 0 < t 1 < … < t m < T, eL 1[0, T], c ∈ ℝ, J i and M i , i = 1, 2, …, m, are continuous mappings of G[0, T] × G[0, T] into ℝ, and G[0, T] denotes the space of functions regulated on [0, T]. The presented principle is based on an averaging procedure similar to that introduced by Manásevich and Mawhin for singular periodic problems with p-Laplacian. Published in Neliniini Kolyvannya, Vol. 11, No. 1, pp. 32–44, January–March, 2007.  相似文献   

14.
A closed-form model for the computation of temperature distribution in an infinitely extended isotropic body with a time-dependent moving-heat sources is discussed. The temperature solutions are presented for the sources of the forms: (i) 01(t)=0 exp(−λt), (ii) 02(t) =0(t/t *)exp(−λt), and 03(t)=0[1+a cost)], where λ and ω are real parameters and t * characterizes the limiting time. The reduced (or dimensionless) temperature solutions are presented in terms of the generalized representation of an incomplete gamma function Γ(α,x;b) and its decomposition C Γ and S Γ. The solutions are presented for moving, -point, -line, and -plane heat sources. It is also demonstrated that the present analysis covers the classical temperature solutions of a constant strength source under quasi-steady state situations. Received on 13 June 1997  相似文献   

15.
Let u(ε) be a rescaled 3-dimensional displacement field solution of the linear elastic model for a free prismatic rod Ωε having cross section with diameter of order ε, and let u (0) –Bernoulli–Navier displacement – and u (2) be the two first terms derived from the asymptotic method. We analyze the residue r(ε) = u(ε) − (u (0) + ε2 u (2)) and if the cross section is star-shaped, we prove such residue presents a Saint-Venant"s phenomenon near the ends of the rod. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Summary Following up a previous paper by one of the presents authors on the flow field in the balance rheometer, inertia effects being included, in this paper some energy considerations with respect to this flow field are presented. It is shown that in a frame rotating with the same angular velocity as the hemispheres the power supplied by these hemispheres equals the rate of energy dissipation in the sample, i.e. in this coordinate system there is no stress power paradox. Further it is shown that the elastic couple for a Newtonian liquid, appearing in the calculations, stems from the extra kinetic energy caused by the deviation of the actual flow field from the flow field that appears when inertia effects are ignored.
Zusammenfassung Als Fortsetzung des früheren Beitrages eines der hier genannten Autoren über das Strömungsfeld in einem Képès-Rheometer unter Berücksichtigung der Flüssigkeitsträgheit werden in diesem Beitrag einige Energiebetrachtungen angestellt. Es wird gezeigt, daß in einem Koordinatensystem, das mit gleicher Winkelgeschwindigkeit wie die Halbkugeln rotiert, die durch diese Halbkugeln zugeführte Leistung der in der Probe dissipierten Leistung gleich ist, d. h. daß in diesem Koordinatensystem das sogenannte Spannungsenergieparadox nicht vorliegt. Es wird weiter gezeigt, daß das bei einer newtonschen Flüssigkeit auftretende elastische Drehmoment seinen Ursprung in der zusätzlichen kinetischen Energie hat, die der Abweichung des tatsächlichen Strömungsfeldes von dem unter Vernachlässigung der Flüssigkeitsträgheit berechneten Strömungsfeld entspricht.

a distance between rotation axes of orthogonal rheometer - b, c positive numbers (see eq. [29]) - f n (z) j n (z),y n (z),h n (1) (z) orh n (2) (z) - h distance between discs of orthogonal rheometer - h n (1) (z) =j n (z) +iy n (z) spherical Bessel functions of the third kind and ordern - h n (2) (z) =j n (z) –iy n (z) spherical Bessel functions of the third kind and ordern - i - j n (z) spherical Bessel function of the first kind and ordern - k – (/2)1/2 - n integer - p 1 j 1(r 2)y 1(r 1) –j 1(r 1)y 1(r 2) - q 1 - r spherical polar coordinate - r 1(r 2) radius of inner (outer) hemisphere - s 1 - t time - u r ,u ,u physical components of displacement - x, z variables - x, y, z cartesian coordinates in eq. [1] - y n (z) spherical Bessel function of the second kind and ordern - E kin kinetic energy - E s stored energy - F force - F n (z) J n (z),Y n (z),H n (1) (z) orH n (2) (z) - G * =G + iG complex shear modulus - H n (1) (z) =J n (z) +iY n (z) Bessel functions of the third kind and ordern - H n (2) (z) =J n (z) –iY n (z) Bessel functions of the third kind and ordern - Im imaginary part of - J n (z) Bessel function of the first kind and ordern - N - P energy supplied to the sample during one cycle - Re real part of - S strain - U - W energy dissipated in the sample during one cycle - Y n Bessel function of the second kind and ordern - (/G *)1/2-complex shear wave factor - /(r 1 +r 2) - loss angle - angle between rotation axes of balance rheometer - viscosity - spherical polar coordinate - order of cylinder function (see eq. [24]) - linear combination of spherical Bessel functions of first, second, and third kind, in which the coefficients are independent of the argument and the order - µ, v constants (see eq. [24]) - see - density - shear stress - spherical polar coordinate - cylinder functions - angular velocity With 3 figures  相似文献   

17.
We prove a regularity result for the anisotropic linear elasticity equation ${P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f}We prove a regularity result for the anisotropic linear elasticity equationP u : = div ( C ·?u) = f{P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f} , with mixed (displacement and traction) boundary conditions on a curved polyhedral domain W ì \mathbbR3{\Omega \subset \mathbb{R}^3} in weighted Sobolev spaces Km+1a+1(W){\mathcal {K}^{m+1}_{a+1}(\Omega)} , for which the weight is given by the distance to the set of edges. In particular, we show that there is no loss of Kma{\mathcal {K}^{m}_{a}} -regularity. Our curved polyhedral domains are allowed to have cracks. We establish a well-posedness result when there are no neighboring traction boundary conditions and |a| < η, for some small η > 0 that depends on P, on the boundary conditions, and on the domain Ω. Our results extend to other strongly elliptic systems and higher dimensions.  相似文献   

18.
We consider degenerate reaction diffusion equations of the form u t ?=???u m ?+?f(x, u), where f(x, u) ~ a(x)u p with 1??? p m. We assume that a(x)?>?0 at least in some part of the spatial domain, so that ${u \equiv 0}$ is an unstable stationary solution. We prove that the unstable manifold of the solution ${u \equiv 0 }$ has infinite Hausdorff dimension, even if the spatial domain is bounded. This is in marked contrast with the case of non-degenerate semilinear equations. The above result follows by first showing the existence of a solution that tends to 0 as ${t\to -\infty}$ while its support shrinks to an arbitrarily chosen point x* in the region where a(x)?>?0, then superimposing such solutions, to form a family of solutions of arbitrarily large number of free parameters. The construction of such solutions will be done by modifying self-similar solutions for the case where a is a constant.  相似文献   

19.
The steady mixed convection boundary-layer flow over a vertical impermeable surface in a porous medium saturated with water at 4°C (maximum density) when the surface heat flux varies as x m and the velocity outside the boundary layer varies as x (1+2m)/2, where x measures the distance from the leading edge, is discussed. Assisting and opposing flows are considered with numerical solutions of the governing equations being obtained for general values of the flow parameters. For opposing flows, there are dual solutions when the mixed convection parameter λ is greater than some critical value λ c (dependent on the power-law index m). For assisting flows, solutions are possible for all values of λ. A lower bound on m is found, m > −1 being required for solutions. The nature of the critical point λ c is considered as well as various limiting forms; the forced convection limit (λ = 0), the free convection limit (λ → ∞) and the limits as m → ∞ and as m → −1.  相似文献   

20.
Summary A hypersingular integral equation or a differential-integral equation is used to solve the penny-shaped crack problem. It is found that, if a displacement jump (crack opening displacement COD) takes the form of (a 2x 2y 2)1/2 x m y n , where a denotes the radius of the circular region, the relevant traction applied on the crack face can be evaluated in a closed form, and the stress intensity factor can be derived immediately. Finally, some particular solutions of the penny-shaped crack problem are presented in this paper. Received 1 July 1997; accepted for publication 13 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号