首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports on the effect of carbon nanotube aggregation on the electrical conductivity and other network properties of polymer/carbon nanotube composites by modeling the carbon nanotubes as hard-core cylinders. It is shown that the conductivity decreases for increasing filler aggregation, and that this effect is more significant for higher cylinder volume fractions. It is also demonstrated, for volume fractions at which the giant component is present, that increasing the fraction of cylinders within clusters leads to a break of the giant component and the formation of a set of finite clusters. The decrease of the giant component with the increase of the fraction of cylinders within the cluster can be related to a decrease of the spanning probability due to a decrease of the number of cylinders between the clusters. Finally, it is demonstrated that the effect of aggregation can be understood by employing the network theory.  相似文献   

2.
The comprehension of neuronal network functioning, from most basic mechanisms of signal transmission to complex patterns of memory and decision making, is at the basis of the modern research in experimental and computational neurophysiology. While mechanistic knowledge of neurons and synapses structure increased, the study of functional and effective networks is more complex, involving emergent phenomena, nonlinear responses, collective waves, correlation and causal interactions. Refined data analysis may help in inferring functional/effective interactions and connectivity from neuronal activity. The Transfer Entropy (TE) technique is, among other things, well suited to predict structural interactions between neurons, and to infer both effective and structural connectivity in small- and large-scale networks. To efficiently disentangle the excitatory and inhibitory neural activities, in the article we present a revised version of TE, split in two contributions and characterized by a suited delay time. The method is tested on in silico small neuronal networks, built to simulate the calcium activity as measured via calcium imaging in two-dimensional neuronal cultures. The inhibitory connections are well characterized, still preserving a high accuracy for excitatory connections prediction. The method could be applied to study effective and structural interactions in systems of excitable cells, both in physiological and in pathological conditions.  相似文献   

3.
赵华波  李震  李睿  张朝晖  张岩  刘宇  李彦 《物理学报》2009,58(12):8473-8477
利用导电型原子力显微镜对大范围碳纳米管(CNT)网络的导电性能进行成像观察.研究发现:在几十微米的成像范围内,每根CNT本身的电阻远小于CNT之间的接触电阻,以致于在电压偏置的网络中不同的CNT呈现电位不同的等位体;CNT的导电性能虽不因与其他CNT的交叠接触而改变,但是如果缠绕成束,则半导体性CNT趋于呈现金属性CNT的导电特征. 关键词: 导电型原子力显微镜 碳纳米管网络 碳管纳米电导  相似文献   

4.
《Physica A》2006,361(2):707-723
Inspired by the Statistical Physics of complex networks, wireless multihop ad hoc communication networks are considered in abstracted form. Since such engineered networks are able to modify their structure via topology control, we search for optimized network structures, which maximize the end-to-end throughput performance. A modified version of betweenness centrality is introduced and shown to be very relevant for the respective modeling. The calculated optimized network structures lead to a significant increase of the end-to-end throughput. The discussion of the resulting structural properties reveals that it will be almost impossible to construct these optimized topologies in a technologically efficient distributive manner. However, the modified betweenness centrality also allows to propose a new routing metric for the end-to-end communication traffic. This approach leads to an even larger increase of throughput capacity and is easily implementable in a technologically relevant manner.  相似文献   

5.
Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh--Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony.  相似文献   

6.
We study the phenomenon of stochastic resonance on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise via voltage-gated ion channels embedded in neuronal membranes. Importantly thereby, the subthreshold periodic driving is introduced to a single neuron of the network, thus acting as a pacemaker trying to impose its rhythm on the whole ensemble. We show that there exists an optimal intensity of intrinsic ion channel noise by which the outreach of the pacemaker extends optimally across the whole network. This stochastic resonance phenomenon can be further amplified via fine-tuning of the small-world network structure, and depends significantly also on the coupling strength among neurons and the driving frequency of the pacemaker. In particular, we demonstrate that the noise-induced transmission of weak localized rhythmic activity peaks when the pacemaker frequency matches the intrinsic frequency of subthreshold oscillations. The implications of our findings for weak signal detection and information propagation across neural networks are discussed.  相似文献   

7.
We analyze the effect of synchronization in networks of chemically coupled multi-time-scale (spiking-bursting) neurons on the process of information transmission within the network. Although, synchronization occurs first in the slow time-scale (burst) and then in the fast time-scale (spike), we show that information can be transmitted with low probability of errors in both time scales when the bursts become synchronized. Furthermore, we show that for networks of non-identical multi-time-scales neurons, complete synchronization is no longer possible, but instead burst phase synchronization. Our analysis shows that clusters of burst phase synchronized neurons are very likely to appear in a network for parameters far smaller than the ones for which the onset of burst phase synchronization in the whole network takes place.  相似文献   

8.
以广泛讨论的Fitz Hugh-Nagumo神经元节点组成脉动神经元网络,从神经系统空时模式编码理论研究网络的记忆(或模式)存储与时间分割问题.给定一个输入模式,它是几种模式的叠加,网络能够以一部分神经元同步发放的形式一个接一个地分割出每一种模式.如果输入的模式有缺损,系统能够把它们恢复成原型,即神经网络的联想记忆功能.模拟需要调节耦合强度和噪声强度等参数使得网络在特定的参数值和中等强度噪声达到最优的时间分割,与广泛讨论的随机共振现象一致.  相似文献   

9.
We study the role of network architecture in the formation of synchronous clusters in synaptically coupled networks of bursting neurons. We give a simple combinatorial algorithm that finds the largest synchronous clusters from the network topology. We demonstrate that networks with a certain degree of internal symmetries are likely to have cluster decompositions with relatively large clusters, leading potentially to cluster synchronization at the mesoscale network level. We also address the asymptotic stability of cluster synchronization in excitatory networks of Hindmarsh-Rose bursting neurons and derive explicit thresholds for the coupling strength that guarantees stable cluster synchronization.  相似文献   

10.
彭建华  于洪洁 《物理学报》2007,56(8):4353-4360
为了模拟人与动物感知信息的真实环境,以脉动神经元节点组成神经元网络,研究在随机刺激和混沌刺激等极端条件下的记忆模式存储与时间分割问题.研究表明:网络对于若干种模式的叠加输入,能够以一部分神经元同步发放的形式在时间域上分割出每一模式. 如果输入模式是缺损的,系统能够把它们恢复到原型,即具有联想记忆功能.通过调节耦合强度和噪声强度等参数使得网络在中等强度噪声达到最优的时间分割,与广泛讨论的随机共振现象一致. 关键词: 神经网络 空时模式 联想记忆 随机共振  相似文献   

11.
In this article, we investigate the role of connectivity in promoting coherent activity in excitatory neural networks. In particular, we would like to understand if the onset of collective oscillations can be related to a minimal average connectivity and how this critical connectivity depends on the number of neurons in the networks. For these purposes, we consider an excitatory random network of leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed Erdo?s-Renyi graph with average connectivity scaling as a power law with the number of neurons in the network. The scaling is controlled by a parameter γ, which allows to pass from massively connected to sparse networks and therefore to modify the topology of the system. At a macroscopic level, we observe two distinct dynamical phases: an asynchronous state corresponding to a desynchronized dynamics of the neurons and a regime of partial synchronization (PS) associated with a coherent periodic activity of the network. At low connectivity, the system is in an asynchronous state, while PS emerges above a certain critical average connectivity (c). For sufficiently large networks, (c) saturates to a constant value suggesting that a minimal average connectivity is sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered network: sparse or massively connected. However, this value depends on the nature of the synapses: reliable or unreliable. For unreliable synapses, the critical value required to observe the onset of macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a limit, the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond to that of a homogeneous fully connected network for any γ-value. Apart for the peculiar exception of sparse networks, which remain intrinsically inhomogeneous at any system size.  相似文献   

12.
Ordered arrays of carbon nanotubes (CNT) have been coated by Ni nanoparticles and Ni thin films by using the chronoamperometry technique for nickel reduction. Two different kinds of nanotube arrays have been used: aligned bundles of CNT grown on Si substrates by chemical vapour deposition (CVD) and networks of CNT bundles positioned via a dielectrophoretic post-synthesis process between the electrodes of a multifinger device. The morphology and structure of the Ni-coated CNT bundles have been characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). By changing the parameters of the electrochemical process, it is possible to modulate the morphological characteristics of the Ni deposits, which can be obtained in form of nanoparticles uniformly distributed along the whole length of the CNT bundles or of Ni thin films. A qualitative study of the nucleation and growth mechanism of Ni onto CNT has been performed using the theoretical model for diffusion-controlled electrocrystallization, and a correlation between growth mechanism and samples morphology is presented and discussed. The possibility to maintain the architecture of the pristine nanotube deposits after the Ni coating process opens new perspectives for integration of CNT/Ni systems in magnetic and spintronics devices.  相似文献   

13.
The connectome is a wiring diagram mapping all the neural connections in the brain. At the cellular level, it provides a map of the neurons and synapses within a part or all of the brain of an organism. In recent years, significant advances have been made in the study of the connectome via network science and graph theory. This analysis is fundamental to understand neurotransmission (fast synaptic transmission) networks. However, neurons use other forms of communication as neuromodulation that, instead of conveying excitation or inhibition, change neuronal and synaptic properties. This additional neuromodulatory layers condition and reconfigure the connectome. In this paper, we propose that multilayer adaptive networks, in which different synaptic and neurochemical layers interact, are the appropriate framework to explain neuronal processing. Then, we describe a simplified multilayer adaptive network model that accounts for these extra-layers of interaction and analyse the emergence of interesting computational capabilities.  相似文献   

14.
In this paper,we study spiking synchronization in three different types of Hodgkin-Huxley neuronal networks,which are the small-world,regular,and random neuronal networks.All the neurons are subjected to subthreshold stimulus and external noise.It is found that in each of all the neuronal networks there is an optimal strength of noise to induce the maximal spiking synchronization.We further demonstrate that in each of the neuronal networks there is a range of synaptic conductance to induce the effect that an optimal strength of noise maximizes the spiking synchronization.Only when the magnitude of the synaptic conductance is moderate,will the effect be considerable.However,if the synaptic conductance is small or large,the effect vanishes.As the connections between neurons increase,the synaptic conductance to maximize the effect decreases.Therefore,we show quantitatively that the noise-induced maximal synchronization in the Hodgkin-Huxley neuronal network is a general effect,regardless of the specific type of neuronal network.  相似文献   

15.
We discuss synchronization in networks of neuronal oscillators which are interconnected via diffusive coupling, i.e. linearly coupled via gap junctions. In particular, we present sufficient conditions for synchronization in these networks using the theory of semi-passive and passive systems. We show that the conductance based neuronal models of Hodgkin-Huxley, Morris-Lecar, and the popular reduced models of FitzHugh-Nagumo and Hindmarsh-Rose all satisfy a semi-passivity property, i.e. that is the state trajectories of such a model remain oscillatory but bounded provided that the supplied (electrical) energy is bounded. As a result, for a wide range of coupling configurations, networks of these oscillators are guaranteed to possess ultimately bounded solutions. Moreover, we demonstrate that when the coupling is strong enough the oscillators become synchronized. Our theoretical conclusions are confirmed by computer simulations with coupled Hindmarsh-Rose and Morris-Lecar oscillators. Finally we discuss possible “instabilities” in networks of oscillators induced by the diffusive coupling.  相似文献   

16.
Ordinarily, in vitro neurons self-organize into homogeneous networks of single neurons linked by dendrites and axons. We show that under special conditions they can also self-organize into neuronal clusters, which are linked by bundles of axons. Multielectrode array measurement reveals that the clusterized networks are also electrically active and exhibit synchronized bursting events similar to those observed in the homogeneous networks. From time-lapse recording, we deduced the features required for the neuronal clusterized versus homogeneous self-organization and developed a simple model for testing their validity.  相似文献   

17.
We analyze (1 + 1)D kinetic equations for neuronal network dynamics, which are derived via an intuitive closure from a Boltzmann-like equation governing the evolution of a one-particle (i.e., one-neuron) probability density function. We demonstrate that this intuitive closure is a generalization of moment closures based on the maximum-entropy principle. By invoking maximum-entropy closures, we show how to systematically extend this kinetic theory to obtain higher-order, kinetic equations and to include coupled networks of both excitatory and inhibitory neurons.  相似文献   

18.
徐莹  王春妮  靳伍银  马军 《物理学报》2015,64(19):198701-198701
神经系统内数量众多的神经元电活动的群体行为呈现一定的节律性和自组织性. 当网络局部区域存在异质性或者受到持续周期性刺激, 则在网络内诱发靶波, 且这些靶波如'节拍器'可调制介质中行波的诱发和传播. 基于Hindmarsh-Rose 神经元模型构造了最近邻连接下的二维神经元网络, 研究在非均匀耦合下神经元网络内有序波的诱发问题. 在研究中, 选定网络中心区域的耦合强度最大, 从中心向边界的神经元之间的耦合强度则按照阶梯式下降. 研究结果表明, 在恰当的耦合梯度下, 神经元网络内诱发的靶波或螺旋波可以占据整个网络, 并有效调制神经元网络的群体电活动, 使得整个网络呈现有序性. 特别地, 当初始值为随机值时, 梯度耦合也可以诱发稳定的有序态. 这种梯度耦合对网络群体行为调制的研究结果有助于理解神经元网络的自组织行为.  相似文献   

19.
于文婷  张娟  唐军 《物理学报》2017,66(20):200201-200201
神经元膜电位的受激发放在神经系统的信息传递中起着重要作用.基于一个受动态突触刺激的突触后神经元发放模型,采用数值模拟和傅里叶变换分析的方法研究了动态突触、神经耦合与时间延迟对突触后神经元发放的影响.结果发现:突触前神经元发放频率与Hodgkin-Huxley神经元的固有频率发生共振决定了突触后神经元发放的难易,特定频率范围内的电流刺激有利于神经元激发,动态突触输出的随机突触电流中这些电流刺激所占的比率在很大程度上影响了突触后神经元的发放次数;将突触后神经元换成神经网络后,网络中神经元之间的耦合可以促进神经元的发放,耦合中的时间延迟可以增强这种促进作用,但是不会改变神经耦合对神经元发放的促进模式.  相似文献   

20.
In this article, a novel adaptive fixed-time neural network tracking control scheme for nonlinear interconnected systems is proposed. An adaptive backstepping technique is used to address unknown system uncertainties in the fixed-time settings. Neural networks are used to identify the unknown uncertainties. The study shows that, under the proposed control scheme, each state in the system can converge into small regions near zero with fixed-time convergence time via Lyapunov stability analysis. Finally, the simulation example is presented to demonstrate the effectiveness of the proposed approach. A step-by-step procedure for engineers in industry process applications is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号