首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Key voice features--fundamental frequency (F0) and formant frequencies--can vary extensively between individuals. Much of the variation can be traced to differences in the size of the larynx and vocal-tract cavities, but whether these differences in turn simply reflect differences in speaker body size (i.e., neutral vocal allometry) remains unclear. Quantitative analyses were therefore undertaken to test the relationship between speaker body size and voice F0 and formant frequencies for human vowels. To test the taxonomic generality of the relationships, the same analyses were conducted on the vowel-like grunts of baboons, whose phylogenetic proximity to humans and similar vocal production biology and voice acoustic patterns recommend them for such comparative research. For adults of both species, males were larger than females and had lower mean voice F0 and formant frequencies. However, beyond this, F0 variation did not track body-size variation between the sexes in either species, nor within sexes in humans. In humans, formant variation correlated significantly with speaker height but only in males and not in females. Implications for general vocal allometry are discussed as are implications for speech origins theories, and challenges to them, related to laryngeal position and vocal tract length.  相似文献   

2.
Previous studies suggest that speakers are systematically inaccurate, or biased, when imitating self-produced vowels. The direction of these biases in formant space and their variation may offer clues about the organization of the vowel perceptual space. To examine these patterns, three male speakers were asked to imitate 45 self-produced vowels that were systematically distributed in F1/F2 space. All three speakers showed imitation bias, and the bias magnitudes were significantly larger than those predicted by a model of articulatory noise. Each speaker showed a different pattern of bias directions, but the pattern was unrelated to the locations of prototypical vowels produced by that speaker. However, there were substantial quantitative regularities: (1) The distribution of imitation variability and bias magnitudes were similar for all speakers, (2) the imitation variability was independent of the bias magnitudes, and (3) the imitation variability (a production measure) was commensurate with the formant discrimination limen (a perceptual measure). These results indicate that there is additive Gaussian noise in the imitation process that independently affects each formant and that there are speaker-dependent and potentially nonlinguistic biases in vowel perception and production.  相似文献   

3.
An area function model of the vocal tract is tested for its ability to produce typical vowel formant frequencies with a perturbation at the lips. The model, which consists of a neutral shape and two weighted orthogonal shaping patterns (modes), has previously been shown to produce a nearly one-to-one mapping between formant frequencies and the weighting coefficients of the modes [Story and Titze, J. Phonetics, 26, 223-260 (1998)]. In this study, a perturbation experiment was simulated by imposing a constant area "lip tube" on the model. The mapping between the mode coefficients and formant frequencies was then recomputed with the lip tube in place and showed that formant frequencies (F1 and F2) representative of the vowels [u,o,u] could no longer be produced with the model. However, when the mode coefficients were allowed to exceed their typical bounding values, the mapping between them and the formant frequencies was expanded such that the vowels [u,o,u] were compensated. The area functions generated by these exaggerated coefficients were shown to be similar to vocal-tract shapes reported for real speakers under similar perturbed conditions [Savariaux, Perrier, and Orliaguet, J. Acoust. Soc. Am., 98, 2428-2442 (1995)]. This suggests that the structure of this particular model captures some of the human ability to configure the vocal-tract shape under both ordinary and extraordinary conditions.  相似文献   

4.
Research on the perception of vowels in the last several years has given rise to new conceptions of vowels as articulatory, acoustic, and perceptual events. Starting from a "simple" target model in which vowels were characterized articulatorily as static vocal tract shapes and acoustically as points in a first and second formant (F1/F2) vowel space, this paper briefly traces the evolution of vowel theory in the 1970s and 1980s in two directions. (1) Elaborated target models represent vowels as target zones in perceptual spaces whose dimensions are specified as formant ratios. These models have been developed primarily to account for perceivers' solution of the "speaker normalization" problem. (2) Dynamic specification models emphasize the importance of formant trajectory patterns in specifying vowel identity. These models deal primarily with the problem of "target undershoot" associated with the coarticulation of vowels with consonants in natural speech and with the issue of "vowel-inherent spectral change" or diphthongization of English vowels. Perceptual studies are summarized that motivate these theoretical developments.  相似文献   

5.
Recent advances in physiological data collection methods have made it possible to test the accuracy of predictions against speaker-specific vocal tracts and acoustic patterns. Vocal tract dimensions for /r/ derived via magnetic-resonance imaging (MRI) for two speakers of American English [Alwan, Narayanan, and Haker, J. Acoust. Soc. Am. 101, 1078-1089 (1997)] were used to construct models of the acoustics of /r/. Because previous models have not sufficiently accounted for the very low F3 characteristic of /r/, the aim was to match formant frequencies predicted by the models to the full range of formant frequency values produced by the speakers in recordings of real words containing /r/. In one set of experiments, area functions derived from MRI data were used to argue that the Perturbation Theory of tube acoustics cannot adequately account for /r/, primarily because predicted locations did not match speakers' actual constriction locations. Different models of the acoustics of /r/ were tested using the Maeda computer simulation program [Maeda, Speech Commun. 1, 199-299 (1982)]; the supralingual vocal-tract dimensions reported in Alwan et al. were found to be adequate at predicting only the highest of attested F3 values. By using (1) a recently developed adaptation of the Maeda model that incorporates the sublingual space as a side branch from the front cavity, and by including (2) the sublingual space as an increment to the dimensions of the front cavity, the mid-to-low values of the speakers' F3 range were matched. Finally, a simple tube model with dimensions derived from MRI data was developed to account for cavity affiliations. This confirmed F3 as a front cavity resonance, and variations in F1, F2, and F4 as arising from mid- and back-cavity geometries. Possible trading relations for F3 lowering based on different acoustic mechanisms for extending the front cavity are also proposed.  相似文献   

6.
Imitations of ten synthesized vowels were recorded from 33 speakers including men, women, and children. The first three formant frequencies of the imitations were estimated from spectrograms and considered with respect to developmental patterns in vowel formant structure, uniform scale factors for vowel normalization, and formant variability. Strong linear effects were observed in the group data for imitations of most of the English vowels studied, and straight lines passing through the origin provided a satisfactory fit to linear F1--F2 plots of the English vowel data. Logarithmic transformations of the formant frequencies helped substantially to equalize the dispersion of the group data for different vowels, but formant scale factors were observed to vary somewhat with both formant number and vowel identity. Variability of formant frequency was least for F1 (s.d. of 60 Hz or less for English vowels of adult males) and about equal for F2 and F3 (s.d. of 100 Hz or less for English vowels of adult males).  相似文献   

7.
A new set of area functions for vowels has been obtained with magnetic resonance imaging from the same speaker as that previously reported in 1996 [Story et al., J. Acoust. Soc. Am. 100, 537-554 (1996)]. The new area functions were derived from image data collected in 2002, whereas the previously reported area functions were based on magnetic resonance images obtained in 1994. When compared, the new area function sets indicated a tendency toward a constricted pharyngeal region and expanded oral cavity relative to the previous set. Based on calculated formant frequencies and sensitivity functions, these morphological differences were shown to have the primary acoustic effect of systematically shifting the second formant (F2) downward in frequency. Multiple instances of target vocal tract shapes from a specific speaker provide additional sampling of the possible area functions that may be produced during speech production. This may be of benefit for understanding intraspeaker variability in vowel production and for further development of speech synthesizers and speech models that utilize area function information.  相似文献   

8.
The first three formant frequencies for 778 steady-state tokens of 30 nonretroflex vowel types uttered by a female speaker are found to lie close to a piecewise-planar surface (expressed numerically as 0.634F1 +0.603F2 -- 0.485F3 -- 366 = 0, for F2 greater than 0.027F1 +1692 and 0.686F1 -- 0.528F2 -- 0.501F3 +1569 = 0, otherwise). The rms distance of the vowels from this surface is only 86 Hz. The intersection between the two planes is a line of nearly constant F2, corresponding closely to the F2 of a uniform vocal tract of the same length as our speaker's. The piecewise-planar representation also suggests a way to test the hypotheses of uniform and nonuniform formant-frequency scaling between speakers.  相似文献   

9.
This study examines cross-linguistic variation in the location of shared vowels in the vowel space across five languages (Cantonese, American English, Greek, Japanese, and Korean) and three age groups (2-year-olds, 5-year-olds, and adults). The vowels /a/, /i/, and /u/ were elicited in familiar words using a word repetition task. The productions of target words were recorded and transcribed by native speakers of each language. For correctly produced vowels, first and second formant frequencies were measured. In order to remove the effect of vocal tract size on these measurements, a normalization approach that calculates distance and angular displacement from the speaker centroid was adopted. Language-specific differences in the location of shared vowels in the formant values as well as the shape of the vowel spaces were observed for both adults and children.  相似文献   

10.
Speakers of rhotic dialects of North American English show a range of different tongue configurations for /r/. These variants produce acoustic profiles that are indistinguishable for the first three formants [Delattre, P., and Freeman, D. C., (1968). "A dialect study of American English r's by x-ray motion picture," Linguistics 44, 28-69; Westbury, J. R. et al. (1998), "Differences among speakers in lingual articulation for American English /r/," Speech Commun. 26, 203-206]. It is puzzling why this should be so, given the very different vocal tract configurations involved. In this paper, two subjects whose productions of "retroflex" /r/ and "bunched" /r/ show similar patterns of F1-F3 but very different spacing between F4 and F5 are contrasted. Using finite element analysis and area functions based on magnetic resonance images of the vocal tract for sustained productions, the results of computer vocal tract models are compared to actual speech recordings. In particular, formant-cavity affiliations are explored using formant sensitivity functions and vocal tract simple-tube models. The difference in F4/F5 patterns between the subjects is confirmed for several additional subjects with retroflex and bunched vocal tract configurations. The results suggest that the F4/F5 differences between the variants can be largely explained by differences in whether the long cavity behind the palatal constriction acts as a half- or a quarter-wavelength resonator.  相似文献   

11.
The role of auditory feedback in speech motor control was explored in three related experiments. Experiment 1 investigated auditory sensorimotor adaptation: the process by which speakers alter their speech production to compensate for perturbations of auditory feedback. When the first formant frequency (F1) was shifted in the feedback heard by subjects as they produced vowels in consonant-vowel-consonant (CVC) words, the subjects' vowels demonstrated compensatory formant shifts that were maintained when auditory feedback was subsequently masked by noise-evidence of adaptation. Experiment 2 investigated auditory discrimination of synthetic vowel stimuli differing in F1 frequency, using the same subjects. Those with more acute F1 discrimination had compensated more to F1 perturbation. Experiment 3 consisted of simulations with the directions into velocities of articulators model of speech motor planning, which showed that the model can account for key aspects of compensation. In the model, movement goals for vowels are regions in auditory space; perturbation of auditory feedback invokes auditory feedback control mechanisms that correct for the perturbation, which in turn causes updating of feedforward commands to incorporate these corrections. The relation between speaker acuity and amount of compensation to auditory perturbation is mediated by the size of speakers' auditory goal regions, with more acute speakers having smaller goal regions.  相似文献   

12.
Three-dimensional vocal tract shapes and consequent area functions representing the vowels [i, ae, a, u] have been obtained from one male and one female speaker using magnetic resonance imaging (MRI). The two speakers were trained vocal performers and both were adept at manipulation of vocal tract shape to alter voice quality. Each vowel was performed three times, each with one of the three voice qualities: normal, yawny, and twangy. The purpose of the study was to determine some ways in which the vocal tract shape can be manipulated to alter voice quality while retaining a desired phonetic quality. To summarize any overall tract shaping tendencies mean area functions were subsequently computed across the four vowels produced within each specific voice quality. Relative to normal speech, both the vowel area functions and mean area functions showed, in general, that the oral cavity is widened and tract length increased for the yawny productions. The twangy vowels were characterized by shortened tract length, widened lip opening, and a slightly constricted oral cavity. The resulting acoustic characteristics of these articulatory alterations consisted of the first two formants (F1 and F2) being close together for all yawny vowels and far apart for all the twangy vowels.  相似文献   

13.
The acoustic effects of the laryngeal cavity on the vocal tract resonance were investigated by using vocal tract area functions for the five Japanese vowels obtained from an adult male speaker. Transfer functions were examined with the laryngeal cavity eliminated from the whole vocal tract, volume velocity distribution patterns were calculated, and susceptance matching analysis was performed between the laryngeal cavity and the vocal tract excluding the laryngeal cavity (vocal tract proper). It was revealed that the laryngeal cavity generates one of the formants of the vocal tract, which is the fourth in the present study. At this formant, the resonance of the laryngeal cavity (the 1/4 wavelength resonance) induces the open-tube resonance of the vocal tract proper (the 3/2 wavelength resonance). At the other formants, on the other hand, the vocal tract proper acts as a closed tube, because the laryngeal cavity has only a small contribution to generating these formants and the effective closed end of the whole vocal tract is the junction between the laryngeal cavity and the vocal tract proper.  相似文献   

14.
An extensive developmental acoustic study of the speech patterns of children and adults was reported by Lee and colleagues [Lee et al., J. Acoust. Soc. Am. 105, 1455-1468 (1999)]. This paper presents a reexamination of selected fundamental frequency and formant frequency data presented in their report for ten monophthongs by investigating sex-specific and developmental patterns using two different approaches. The first of these includes the investigation of age- and sex-specific formant frequency patterns in the monophthongs. The second, the investigation of fundamental frequency and formant frequency data using the critical band rate (bark) scale and a number of acoustic-phonetic dimensions of the monophthongs from an age- and sex-specific perspective. These acoustic-phonetic dimensions include: vowel spaces and distances from speaker centroids; frequency differences between the formant frequencies of males and females; vowel openness/closeness and frontness/backness; the degree of vocal effort; and formant frequency ranges. Both approaches reveal both age- and sex-specific development patterns which also appear to be dependent on whether vowels are peripheral or nonperipheral. The developmental emergence of these sex-specific differences are discussed with reference to anatomical, physiological, sociophonetic, and culturally determined factors. Some directions for further investigation into the age-linked sex differences in speech across the lifespan are also proposed.  相似文献   

15.
The effects of variations in vocal effort corresponding to common conversation situations on spectral properties of vowels were investigated. A database in which three degrees of vocal effort were suggested to the speakers by varying the distance to their interlocutor in three steps (close--0.4 m, normal--1.5 m, and far--6 m) was recorded. The speech materials consisted of isolated French vowels, uttered by ten naive speakers in a quiet furnished room. Manual measurements of fundamental frequency F0, frequencies, and amplitudes of the first three formants (F1, F2, F3, A1, A2, and A3), and on total amplitude were carried out. The speech materials were perceptually validated in three respects: identity of the vowel, gender of the speaker, and vocal effort. Results indicated that the speech materials were appropriate for the study. Acoustic analysis showed that F0 and F1 were highly correlated with vocal effort and varied at rates close to 5 Hz/dB for F0 and 3.5 Hz/dB for F1. Statistically F2 and F3 did not vary significantly with vocal effort. Formant amplitudes A1, A2, and A3 increased significantly; The amplitudes in the high-frequency range increased more than those in the lower part of the spectrum, revealing a change in spectral tilt. On the average, when the overall amplitude is increased by 10 dB, A1, A2, and A3 are increased by 11, 12.4, and 13 dB, respectively. Using "auditory" dimensions, such as the F1-F0 difference, and a "spectral center of gravity" between adjacent formants for representing vowel features did not reveal a better constancy of these parameters with respect to the variations of vocal effort and speaker. Thus a global view is evoked, in which all of the aspects of the signal should be processed simultaneously.  相似文献   

16.
17.
The purpose of this study was to determine the accuracy with which listeners could identify the gender of a speaker from a synthesized isolated vowel based on the natural production of that speaker when (1) the fundamental frequency was consistent with the speaker's gender, (2) the fundamental frequency was inconsistent with the the speaker's gender, and (3) the speaker was transgendered. Ten male-to-female transgendered persons, 10 men and 10 women, served as subjects. Each speaker produced the vowels /i/, /u/, and //. These vowels were analyzed for fundamental frequency and the first three formant frequencies and bandwidths. Formant frequency and bandwidth information was used to synthesize two vowel tokens for each speaker, one at a fundamental frequency of 120 Hz and one at 240 Hz. Listeners were asked to listen to these tokens and determine whether the original speaker was male or female. Listeners were not aware of the use of transgendered speakers. Results showed that, in all cases, gender identifications were based on fundamental frequency, even when fundamental frequency and formant frequency information was contradictory.  相似文献   

18.
A hypothesis on the nature of articulatory targets for the vowels /i/ and /a/ is proposed, based on acoustic considerations and vowel articulations. The conjecture is that positioning of points on the tongue surface in a repetition experiment should be most accurate in the direction perpendicular to the vocal-tract midline, at the acoustically critical point of maximal constriction for each vowel. The hypothesis was tested by: examining x-ray microbeam data for three speakers, conducting a partial acoustical analysis, and performing a modeling study. Distributions were plotted of the midsagittal locations of three tongue points at the time of maximal excursion toward the vowel target for numbers of examples of the vowels, embedded in a variety of phonetic contexts. More variation was found along a direction parallel to the vocal tract midline than perpendicular to the midline, supporting the hypothesis. Statistics on formant values for one subject have been calculated, and pairwise regressions of displacement and formant data have been run. An articulatory synthesizer [Rubin et al., J. Acoust. Soc. Am. 70, 321-328 (1981)] has been manipulated through displacements similar to the subject's articulatory variation. Although articulatory synthesis showed systematic relationships between articulatory relationships and formant frequencies, there were no significant correlations between the subject's measured articulatory displacements and his formant data. These additional results raise questions about the methodology and point to the need for additional work for an adequate test of the hypothesis.  相似文献   

19.
The sound level of the singer's formant in professional singing   总被引:2,自引:0,他引:2  
The relative sound level of the "singer's formant," measured in a 1/3-oct band with a center frequency of 2.5 kHz for males and of 3.16 kHz for females, has been investigated for 14 professional singers, nine different modes of singing, nine different vowels, variations in overall sound-pressure level, and fundamental frequencies ranging from 98 up to 880 Hz. Variation in the sound level of the singer's formant due to differences among male singers was small (4 dB), the factors vowels (16 dB) and fundamental frequency (9-14 dB) had an intermediate effect, while the largest variation was found for differences among female singers (24 dB), between modes of singing (vocal effort) (23 dB), and in overall sound-pressure level (more than 30 dB). In spite of this great potential variability, for each mode of singing the sound level of the singer's formant was remarkably constant up to F0 = 392 Hz, due to adaptation of vocal effort. This may be explained as the result of the perceptual demand of a constant voice quality. The definition of the singer's formant is discussed.  相似文献   

20.
To reduce degradation in speech recognition due to varied characteristics of different speakers,a method of perceptual frequency warping based on subglottal resonances for speaker normalization is proposed.The warping factor is extracted from the second subglottal resonance using acoustic coupling between subglottis and vocal tract.The second subglottal resonance is independent of the speech content,which reflects the speaker characteristics more than the third formant.The perceptual minimum variation distortionless response(PMVDR) coefficient is normalized,which is more robust and has better anti-noise capability than MFCC. The normalized coefficients are used in the speech-mode training and speech recognition.Experiments show that the word error rate,as compared with MFCC and the spectrum warping by the third formant,decreases by 4%and 3%respectively in clean speech recognition,and by 9%and 5%respectively in a noisy environment.The results indicate that the proposed method can improve the word recognition accuracy in a speaker-independent recognition system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号