首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two‐dimensional graphical representation (2DGRR) of RNA secondary structures using a two Cartesian coordinates system has been derived for mathematical denotation of RNA structure. The 2DGRR resolves structure degeneracy and avoids loss of information and the limitation that different structures correspond to the same curve. The RNA pseudo‐knots also can be represented as 2D graphical representations. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

2.
The ability of fluorine in a C-F bond to act as?a hydrogen bond acceptor is controversial. To test such ability in complex RNA macromolecules, we have replaced native 2'-OH groups with 2'-F and 2'-H groups in two related systems, the Tetrahymena group I ribozyme and the ΔC209 P4-P6 RNA domain. In three cases the introduced 2'-F mimics the native 2'-OH group, suggesting that the fluorine atom can accept a hydrogen bond. In each of these cases the native hydroxyl group interacts with a purine exocyclic amine. Our results give insight about the properties of organofluorine and suggest a possible general biochemical signature for tertiary interactions between 2'-hydroxyl groups and exocyclic amino groups within RNA.  相似文献   

3.
In vitro selection was used to identify deoxyribozymes that ligate two RNA substrates. In the ligation reaction, a 2'-5' RNA phosphodiester linkage is created from a 2',3'-cyclic phosphate and a 5'-hydroxyl group. The new Mg(2+)-dependent deoxyribozymes provide 50-60% yield of ligated RNA in overnight incubations at pH 7.5 and 37 degrees C, and they afford 40-50% yield in 1 h at pH 9.0 and 37 degrees C. Various RNA substrate sequences may be joined by simple Watson-Crick covaration of the DNA binding arms that interact with the two RNA substrates. The current deoxyribozymes have some RNA substrate sequence requirements at the nucleotides immediately surrounding the ligation junction (either UAUA GGAA or UAUN GGAA, where the arrow denotes the ligation site and N equals any nucleotide). One of the new deoxyribozymes was used to prepare by ligation the Tetrahymena group I intron RNA P4-P6 domain, a representative structured RNA. Nondenaturing gel electrophoresis revealed that a 2'-5' linkage between nucleotides A233 and G234 of P4-P6 does not disrupt its Mg(2+)-dependent folding (DeltaDeltaG degrees ' < 0.2 kcal/mol). This demonstrates that a 2'-5' linkage does not necessarily interfere with structure in a folded RNA. Therefore, these non-native linkages may be acceptable in modified RNAs when structure/function relationships are investigated. Deoxyribozymes that ligate RNA should be particularly useful for preparing site-specifically modified RNAs for studies of RNA structure, folding, and catalysis.  相似文献   

4.
2'-O-(1-Naphthyl)uridine and 2'-O-(2-naphthyl)uridine were synthesized by a microwave-mediated reaction of 2,2'-anhydrouridine with naphthols. Using the 3'-phosphoramidite building blocks, these 2'-O-aryluridine derivatives were incorporated into 2'-O-methylated oligoribonucleotides. Incorporation of five 2'-O-(2-naphthyl)uridines into a 2'-O-methylated RNA sense strand significantly increased the thermostability of the duplex with a 2'-O-methylated RNA antisense strand. Circular dichroism spectroscopy and molecular dynamic simulation of the duplexes formed between the modified RNAs and 2'-O-methyl RNAs suggested that there are π-π interactions between two neighboring naphthyl groups in a sequence of the five consecutively modified nucleosides.  相似文献   

5.
Despite over 40 years of physical investigations, fundamental questions persist regarding the energetics of RNA and DNA intercalation. The dramatic unwinding of a nucleic acid duplex upon intercalation immediately suggests that the nucleic acid backbone should play a significant role in dictating the free energy of intercalation. However, the contribution of the backbone to intercalation free energy is difficult to appreciate given the intertwined energetics associated with intercalation (e.g., pi-pi stacking and solvent effects). Fluorescence titrations were used to determine the association constants of two known intercalators, proflavine and ethidium, for duplex 2',5'-linked RNA. Proflavine was found to bind 2',5' RNA with an association constant 25-fold greater than that measured for standard, 3',5'-linked RNA. In contrast, ethidium binds 2',5' RNA less favorably than standard RNA.  相似文献   

6.
ADAR2 is an RNA editing enzyme that deaminates adenosines in certain duplex structures. Here, we describe the role of its RNA binding domain, consisting of two copies of a common dsRNA binding motif (dsRBM), in editing site selectivity. ADAR2's dsRBMs bind selectively on a duplex RNA that mimics the Q/R editing site in the glutamate receptor B-subunit pre-mRNA. This selectivity is different from that of PKR's dsRBM I, indicating that dsRBMs from different proteins possess intrinsic binding selectivity. Using directed hydroxyl radical cleavage data, molecular models were developed that predict important recognition surfaces on the RNA for identified dsRBM binding sites. Blocking these surfaces by benzyl modification of guanosine 2-amino groups impeded RNA-editing, demonstrating a correlation between deamination efficiency by ADAR2 and selective binding by its dsRBMs. In addition, the editing activity of a mutant of ADAR2 lacking dsRBM I on N(2)-benzylguanosine-modified RNA suggests the location of the dsRBM I binding site that leads to editing at the GluR-B Q/R site.  相似文献   

7.
The 2'-hydroxyl groups within RNA contribute in essential ways to RNA structure and function. Previously, we designed an atomic mutation cycle (AMC) that uses ribonucleoside analogues bearing different C-2'-substituents, including -OCH(3), -NH(2), -NHMe, and -NMe(2), to identify hydroxyl groups within RNA that donate functionally significant hydrogen bonds. To enable AMC analysis of the nucleophilic guanosine cofactor in the Tetrahymena ribozyme reaction and at other guanosines whose 2'-hydroxyl groups impart critical functional contributions, we describe here the syntheses of 2'-methylamino-2'-deoxyguanosine (G(NHMe)) and 2'-N,N-dimethylamino-2'-deoxyguanosine (G(NMe(2))) and their corresponding phosphoramidites. The key step in obtaining the nucleosides involved S(N)2 displacement of 2'-β-triflate from an appropriate guanosine derivative by methylamine or dimethylamine. We readily obtained the G(NMe(2)) phosphoramidite and incorporated it into RNA. However, the G(NHMe) phosphoramidite posed a significantly greater challenge due to lack of a suitable -2'-NHMe protecting group. After testing several strategies, we established that allyloxycarbonyl (Alloc) provided suitable protection for 2'-N-methylamino group during the phosphoramidite synthesis and the subsequent RNA synthesis. This work enables AMC analysis of guanosine's 2'-hydroxyl group within RNA.  相似文献   

8.
采用溶胶-凝胶法制备了TiO2-SiO2纳米粒子.通过X-射线衍射谱、透射电子显微镜等对纳米粒子进行了表征.研究了TiO2-SiO2纳米粒子与核糖核酸(RNA)的相互作用,建立了基于纳米粒子与RNA吸附反应,二级散射光谱法测定痕量RNA的新方法.方法的线性范围是0.005~5 mg/L; 检出限为1.46 μg/L.方法用于RNA合成样品的测定,回收率为99.4%~103.9%;相对标准偏差为019%~0.24%.  相似文献   

9.
[structure] Oligonucleotides with two novel modifications, 2'-O-?2-[N, N-(dimethyl)aminooxy]ethyl? (2'-O-DMAOE) and 2'-O-?2-[N, N-(diethyl)aminooxy]ethyl? (2'-O-DEAOE), have been synthesized. These modifications exhibit high binding affinity to target RNA (and not to DNA) and enhance the nuclease stability of oligonucleotides considerably with t(1/2) > 24 h as a phosphodiester.  相似文献   

10.
Canonical duplex RNA assumes only the A-form conformation at the secondary structure level while, in contrast, a wide range of noncanonical, tertiary conformations of RNA occur. Here, we show how the 2'-hydroxyl controls RNA conformational properties. Quantum mechanical calculations reveal that the orientation of the 2'-hydroxyl significantly alters the intrinsic flexibility of the phosphodiester backbone, favoring the A-form in duplex RNA when it is in the base orientation and facilitating sampling of a wide range of noncanonical, tertiary structures when it is in the O3' orientation. Influencing the orientation of the 2'-hydroxyl are interactions with the environment, as evidenced by crystallographic survey data, indicating the 2'-hydroxyl to sample more of the O3' orientation in noncanonical RNA structures. These results indicate that the 2'-hydroxyl acts as a "switch", both limiting the conformation of RNA to the A-form at the secondary structure level and allowing RNA to sample a wide range of noncanonical tertiary conformations.  相似文献   

11.
12.
Ribose 2'-amine substitutions are broadly useful as structural probes in nucleic acids. In addition, structure-selective chemical reaction at 2'-amine groups is a robust technology for interrogating local nucleotide flexibility and conformational changes in RNA and DNA. We analyzed crystal structures for several RNA duplexes containing 2'-amino cytidine (C(N)) residues that form either C(N)-G base pairs or C(N)-A mismatches. The 2'-amine substitution is readily accommodated in an A-form RNA helix and thus differs from the C2'-endo conformation observed for free nucleosides. The 2'-amide product structure was visualized directly by acylating a C(N)-A mismatch in intact crystals and is also compatible with A-form geometry. To visualize conformations able to facilitate formation of the amide-forming transition state, in which the amine nucleophile carries a positive partial charge, we analyzed crystals of the C(N)-A duplex at pH 5, where the 2'-amine is protonated. The protonated amine moves to form a strong electrostatic interaction with the 3'-phosphodiester. Taken together with solution-phase experiments, 2'-amine acylation is likely facilitated by either of two transition states, both involving precise positioning of the adjacent 3'-phosphodiester group.  相似文献   

13.
We report the structural effect of 2'-deoxy-2',2'-difluorocytidine (dFdC) insertions in the DNA strand of a DNA : RNA hybrid duplex and in a self-complementary DNA : DNA duplex. In both cases, the modification slightly destabilizes the duplex and provokes minor local distortions that are more pronounced in the case of the DNA : RNA hybrid. Analysis of the solution structures determined by NMR methods show that dFdC is an adaptable derivative that adopts North type sugar conformation when inserted in pure DNA, or a South sugar conformation in the context of DNA : RNA hybrids. In this latter context, South sugar pucker favors the formation of a 2'F⋅⋅H8 attractive interaction with a neighboring purine, which compensates the destabilizing effect of base pair distortions. These interactions share some features with pseudohydrogen bonds described previously in other nucleic acids structures with fluorine modified sugars.  相似文献   

14.
RNA molecules undergo local conformational dynamics on timescales spanning picoseconds to minutes. Slower local motions have the greater potential to govern RNA folding, ligand recognition, and ribonucleoprotein assembly reactions but are difficult to detect in large RNAs with complex structures. RNA SHAPE chemistry employs acylation of the ribose 2'-hydroxyl position to measure local nucleotide flexibility in RNA and is well-characterized by a mechanism in which each nucleotide samples unreactive (closed) and reactive (open) states. We monitor RNA conformational dynamics over distinct time domains by varying the electrophilicity of the acylating reagent. Select C2'-endo nucleotides are nonreactive toward fast reagents but reactive toward slower SHAPE reagents in both model RNAs and in a large RNA with a tertiary fold. We conclude, first, that the C2'-endo conformation by itself does not govern SHAPE reactivity. However, some C2'-endo nucleotides undergo extraordinarily slow conformational changes, on the order of 10(-4) s(-1). Due to their distinctive local dynamics, C2'-endo nucleotides have the potential to function as rate-determining molecular switches and are likely to play central, currently unexplored, roles in RNA folding and function.  相似文献   

15.
Although site-bound Mg2+ ions have been proposed to influence RNA structure and function, establishing the molecular properties of such sites has been challenging due largely to the unique electrostatic properties of the RNA biopolymer. We have previously determined that, in solution, the hammerhead ribozyme (a self-cleaving RNA) has a high-affinity metal ion binding site characterized by a K(d,app) < 10 microM for Mn2+ in 1 M NaCl and speculated that this site has functional importance in the ribozyme cleavage reaction. Here we determine both the precise location and the hydration level of Mn2+ in this site using ESEEM (electron spin-echo envelope modulation) spectroscopy. Definitive assignment of the high-affinity site to the activity-sensitive A9/G10.1 region is achieved by site-specific labeling of G10.1 with 15N guanine. The coordinated metal ion retains four water ligands as measured by 2H ESEEM spectroscopy. The results presented here show that a functionally important, specific metal binding site is uniquely populated in the hammerhead ribozyme even in a background of high ionic strength. Although it has a relatively high thermodynamic affinity, this ion remains partially hydrated and is chelated to the RNA by just two ligands.  相似文献   

16.
Abstract— Two properties of the u.v. inactivation process in the u.v. sensitive U(2) strain have been investigated: (1) The increased binding of protein to RNA induced by irradiation of the virus at 254 nm; (2) The action spectrum for u.v. inactivation of U(2) between 250 nm and 285 nm. The extent of the u.v. induced binding of protein to RNA is similar to that previously found in the resistant U(1) strain, thereby eliminating the possibility that the capacity for this binding phenomenon bears any correlation to the difference in u.v. sensitivities of these two viruses at 254 nm. The results indicate that the radiation induced interaction of protein and RNA in U(1) and U(2) are probably similar. The action spectrum for U(2) resembles the absorption spectrum of the RNA between 250 nm and 285 nm implicating the RNA as the primary absorber leading to inactivation of the virus in this region of the spectrum. Quantum yields calculated for U(2) virus and free TMV-RNA irradiated at 254 nm reveal that the irradiated free RNA may be as much as 1–4 times more sensitive to inactivation at this wavelength than RNA in the intact virus. It is concluded that the coat protein of U(2) probably offers some protection to the enclosed RNA against u.v. damage at 254 nm, therefore, the difference in u.v. sensitivity between U(1) and U(2) TMV at this wavelength is a consequence of a difference in the degree of protection offered by the respective coat proteins to the enclosed RNA.  相似文献   

17.
2'-beta-Methyl nucleosides have potential value as therapeutic agents and as nucleoside analogues for exploring RNA biology. Here we develop a strategy for efficient synthesis for 2'-C-beta-methylguanosine (3). Starting from 1,2,3,5-tetra-O-benzoyl-2-C-beta-methyl-d-ribofuranose (1) and N2-acetylguanine, we obtained the title compound in two steps (78% overall yield) with high stereoselectivity (beta/alpha > 99:1) and high regioselectivity (N9/N7 > 99:1). Extension of this strategy to the classic synthesis of guanosine also resulted in high stereoselectivity (beta/alpha = 99:1) and improved regioselectivity (N9/N7 = 97:3).  相似文献   

18.
Lysidine (k2C) is one of the most modified pyrimidine RNA bases. It is a cytidine nucleoside, in which the 2-oxo functionality of the heterocycle is replaced by the ϵ-amino group of the amino acid lysine. As such, lysidine is an amino acid-containing RNA nucleoside that combines directly genotype (C-base) with phenotype (lysine amino acid). This makes the compound particularly important in the context of theories about the origin of life and here especially for theories that target the origin of translation. Here, we report the total synthesis of the U-derivative of lysidine (k2U), which should have the same base pairing characteristics as k2C if it exists in the isoC-like tautomeric form. To investigate this question, we developed a phosphoramidite building block for k2U, which allows its incorporation into RNA strands. Within RNA, k2U can base pair with the counter base U and isoG, confirming that k2U prefers an isoC-like tautomeric structure that is also known to dominate for k2C. The successful synthesis of a k2U phosphoramidite and its use for RNA synthesis now paves the way for the preparation of a k2C phosphoramidite and RNA strands containing k2C.  相似文献   

19.
tert-Butyldithiomethyl (DTM), a novel hydroxyl protecting group, cleavable under reductive conditions, was developed and applied for the protection of 2'-OH during solid-phase RNA synthesis. This function is compatible with all standard protecting groups used in oligonucleotide synthesis, and allows for fast and high-yield synthesis of RNA. Oligonucleotides containing the 2'-O-DTM groups can be easily deprotected under the mildest possible aqueous and homogeneous conditions. The preserved 5'-O-DMTr function can be used for high-throughput cartridge RNA purification.  相似文献   

20.
By automated synthesis, we prepared hybrid oligonucleotides consisting of covalently linked RNA and p‐DNA sequences (p‐DNA=3′‐deoxyribopyranose (4′→2′)‐oligonucleotides) (see Table 1). The pairing properties of corresponding hybrid duplexes, formed from fully complementary single strands were investigated. An uninterrupted ππ‐stacking at the p‐DNA/RNA interface and cooperative pairing between the two systems was achieved by connecting them via a 4′‐p‐DNA‐2′→5′‐RNA‐3′ and 5′‐RNA‐2′→4′‐p‐DNA‐2′ phosphodiester linkage, respectively (see Fig. 4). The RNA 2′‐phosphoramidites 9 – 12 , required for the formation of the RNA‐2′→4′‐p‐DNA phosphodiester linkage were synthesized from the corresponding, 3′‐O‐tom‐protected ribonucleosides (tom=[(triisopropylsilyl)oxy]methyl; Scheme 1). Analogues of the flavin mononucleotide (=FMN) binding aptamer 22 and the hammerhead ribozyme 25 were prepared. Each of these analogues consisted of two p‐DNA/RNA hybrid single strands with complementary p‐DNA sequences, designed to substitute stem/loop and stem motifs within the parent compounds. By comparative binding and cleavage studies, it was found that mixing of the two complementary p‐DNA/RNA hybrid sequences resulted in the formation of the fully functional analogues 23 ⋅ 24 and 27 ⋅ 28 of the FMN‐binding aptamer and of the hammerhead ribozyme, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号