首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
可压缩流向涡与激波轴对称干扰的数值模拟   总被引:2,自引:0,他引:2  
用NS方程数值模拟了可压缩流向涡和激波轴对称相互作用现象.数值模拟包括定常和非定常两种情况,计算结果分别与相应的实验进行了比较.结果表明数值模拟成功地捕捉到了激波和旋涡相互作用过程中发生的激波波面变形,激波振荡,涡核变大以及激波波后出现驻点、回流区等流场特征.提出了判断流向涡与运动激波相互作用中旋涡破碎的准则  相似文献   

2.
用NS方程数值模拟了可压缩流向涡和激波轴对称相互作用现象.数值模拟包括定常和非定常两种情况,计算结果分别与相应的实验进行了比较.结果表明数值模拟成功地捕捉到了激波和旋涡相互作用过程中发生的激波波面变形,激波振荡,涡核变大以及激波波后出现驻点、回流区等流场特征.提出了判断流向涡与运动激波相互作用中旋涡破碎的准则.  相似文献   

3.
激波和可压缩流向涡相互作用现象近年来成为流体力学研究中的一个热点。本文在激波风洞中研究了可压缩流向涡与斜激波相互作用的现象。实验发现,相互作用后激波和旋涡均发生不同程度变形,但旋涡未发生明显破碎。并且发现在干扰点附近,从涡核发出一束膨胀波,这些膨胀波与斜激波作用,使得激波干扰后发生弯曲。  相似文献   

4.
可压缩流向涡与反向运动激波相互作用的实验   总被引:1,自引:1,他引:1  
对可压缩流向涡与反向运动激波相互作用的现象进行了实验研究.实验在94mm×94mm的方截面激波管中进行.在实验段上游安装了一个有限翼展平直机翼.当入射激波通过机翼后,波后2区气流在模型翼尖诱导出一条流向涡.入射激波在激波管端壁反射后,形成的反射激波在观察窗处和流向涡发生作用.实验中拍摄了激波与流向涡作用全过程的纹影照片,观察到了一些和定常激波与旋涡相互作用不同的现象,并与数值计算结果进行了初步比较  相似文献   

5.
激波与涡对相互作用的实验研究   总被引:2,自引:0,他引:2  
在方截面激波管中进行了平面运动激波和涡对的二维相互作用实验,研究了激波与同向涡对、激波与反向涡对相互作用的非定常过程.根据实验照片,分析讨论了作用过程中激波的变形,二次激波和三波点的形成、演变,激波与激波的相互作用,以及旋涡结构的变化等.实验表明,激波通过涡核时,激波发生剧烈变形,旋涡强度增大,涡核形状改变.  相似文献   

6.
超声速平面混合层小激波的形成与演变   总被引:4,自引:2,他引:2  
为了揭示超声速混合层中小激波形成机理及其与涡相互作用的演变过程,本文基于大涡模拟(LES)方法,结合五阶精度混合TCD/WENO格式,对超声速平面混合层在对流马赫数为Mc=0.65条件下的流场结构进行了数值模拟,数值结果详细描述了超声速混合层中小激波的形成过程。研究了小激波形成后,随涡运动而产生的变形、脱落及发展过程。同时,对混合层双涡合并过程中,小激波与相邻涡相互作用所产生的变形与演变过程进行了讨论。  相似文献   

7.
旋涡与水面相互作用研究   总被引:1,自引:0,他引:1  
马晖扬  吴锤结 《力学学报》1995,27(5):597-602
采用Navier-Stokes方程的有限差分数值解来研究水下生成的旋涡在浮升过程中与水面的相互作用,旋涡的初始模型为Oseen涡。数值模拟给出了在旋涡与水面相互作用过程中,水面形状和涡量场的演化,还讨论了Froude数、Reynolds数和Weber数对水面变形的影响。  相似文献   

8.
数值研究激波与旋涡的相互作用   总被引:4,自引:1,他引:4  
陆夕云  庄礼贤 《力学学报》1993,25(3):257-263
从非定常形式的Euler方程出发,数值模拟了运动激波与旋涡相互作用的非定常流动过程。为保证激波具有较高的分辨率,采用对称型TVD格式进行了数值计算。结果表明。这样可以有效地模拟流场中一些复杂的流动现象,如激波变形、激波分叉和三波点的形成,以及旋涡结构的变化过程等,并与已有的实验流动显示相符良好。同时,也是对TVD格式求解这类问题的一次初步尝试。  相似文献   

9.
采用高精度差分格式求解非定常可压缩Navier-Stokes方程,对激波-单涡/双涡相互干扰产生的声场进行了直接数值。详细研究了波-涡干扰声场结构的早期发展阶段,将激波-单涡的计算结果和相应实验进行 对比,并给出近场声压的衰减规律。在此基础上模拟较为复杂的激波-双涡干扰,给出不同旋涡旋转方向下的声场结构。  相似文献   

10.
激波与火焰的相互作用过程   总被引:5,自引:0,他引:5  
基于带化学反应的Navier Stokes方程和有关的热力学和反应动力学数据,利用改进的VLS格式,对甲烷 空气混合物中激波与火焰的相互作用进行了数值模拟。根据计算结果,讨论了激波掠过火焰时的变形、分叉和发展,以及激波作用下火焰的失稳、变形、破碎和相应的带旋涡的流场。  相似文献   

11.
The vortex formed at the tip of a propeller interacting with the vortex formed at the tip of a stator vane provides a unique environment for the study of vortex interactions. Changes in the relative vortex strengths and vortex rotational directions were determined to impact the resulting vortex structures and are easily implemented with the experimental apparatus described herein. Study of the development of the vortex interaction was determined to be possible by increasing the initial separation between the two vortices. Vortex interaction phenomenon has been observed using smoke flow visualization.The authors would like to thank the NASA Lewis Research Center for their funding of propeller related research from which this experiment evolved and the National Sciences and Engineering Research Council of Canada for R. Johnston's Post Graduate Scholarships.  相似文献   

12.
Acoustic waves emitted by a vortex ring interacting with a fixed solid sphere are studied experimentally and theoretically. The experiments are carried out for two kindsof vortex-sphere arrangement: (A) a vortex ring passes over the sphere, and (B) a vortex ring passes by the sphere. The vortex motion is examined optically by means of a photosensor system, and the pressure signals of the emitted wave are detected by 1/2-inch microphones in the far field. In case A, the measured diameter of the vortex ring after passing the sphere increases from its initial diameter. The observed acoustic wave is dominated mainly by a dipole emission, and some contribution from a quadrupole radiation is present. In case B, the emitted wave is characterized by a rotating dipole emission in which the dipole axis rotates as the vortex position changes relative to the sphere.  相似文献   

13.
Acoustic waves emitted by a vortex ring moving near a thin wedge-like plate of finite width have been studied. The experiments are performed for three configurations: the plate (A) is held edgeways to the direction of the vortex motion, (B) is held sideways to the direction, and (C) is held edgeways at an angle of 45° against the vortex motion. The observed sound wave is of dipole radiation type, and the magnitude of the pressure is large in the direction of the normal to the plate plane and small in parallel. The observed pressure is proportional to the third power of the vortex speed. The instantaneous force exerted on the plate by the vortex motion has also been examined. The force vector is mainly normal to the plate plane. The observed profiles agree within a reasonable degree of accuracy with the theoretical ones calculated for the vortex ring interacting with the flat plate of thickness zero.  相似文献   

14.
An experimental simulation of the interaction of vortex ring-like eddies with the sublayer of a turbulent boundary layer is investigated. An artificially generated vortex ring interacting with a Stokes' layer enables investigation of the interaction with reproducible initial conditions and in the absence of background turbulence. All of the observed features in the turbulent boundary layer production process such as the streaky structure, the pockets, the hairpin vortices, streak lift-up, oscillation, and breakup, have been observed to form. The model shows us that hairpin vortices can pinchoff and reconnect forming new vortex ring-like eddies. Interestingly, the model includes interactions that occur with low probability in the turbulent boundary layer, but which contribute significantly to transport, and may be the events most readily controllable.  相似文献   

15.
An initially planar shock wave can undergo significant distortion to its shape along with changes in its strength during the period of its interaction with a compressible vortex. This phenomenon is studied by numerically simulating the shock wave-vortex interaction with a high resolution shock-capturing scheme. Incident shock waves of various Mach numbers are made to interact with a compressible vortex and the dependence of the shock wave distortion on the strength of the incident shock wave is studied in detail. It is known that the type of complex shock structure formed in the later stages of a compressible vortex-shock wave interaction is dependent on the Mach number of the incident shock wave. A simple physical model based on the principle of shock wave reflection is proposed to explain this complex shock structure formation and its dependence on the relative strengths of the interacting vortex and shock wave. Received July 28, 1997 / Accepted November 17, 1997  相似文献   

16.
A fundamental flow problem of unsteady wind-up of a spanwise vortex is studied in this theoretical work on deepening dynamic stall and transition in a boundary layer, internal layer or related unsteady motion. It examines the nonlinear evolution of the spanwise vortex produced when the local wall pressure develops a maximum or minimum, subsequent to the finite-time break-up of an interacting layer and the impact of normal pressure gradients. The evolution is controlled by an inner–outer interaction between the effects of the normal pressure gradient and the momentum jumps across and outside the vortex, which is situated near the strong inflexion point induced in the mean flow. Although the work concentrates on a particular internal-flow context, many of the flow properties found are generic and in particular apply for a more general case including external flows. Analysis and associated computations point to two main distinct trends in the vortex response, depending to a large extent on a parameter gauging the relative strengths of the above effects. The response is either an explosive one, provoking enhanced wind-up, growth and pressure in the vortex, or it is implosive, causing the vortex to shrink and virtually empty itself through unwinding, leaving little local pressure variation. A further discussion includes the after-effects of this vortex response and some of the connections with experiments and direct computations on deepening stall and transition. Received 22 February 1999 and accepted 28 March 2000  相似文献   

17.
We study an idealized model of body–vortex interaction in two dimensions. The fluid is incompressible and inviscid and assumed to occupy the entire unbounded plane except for a simply connected region representing a rigid body. There may be a constant circulation around the body. The fluid also contains a finite number of point vortices of constant circulation but is otherwise irrotational. We assign a mass distribution to the body and let it move and rotate freely in response to the force and torque exerted by the fluid. Conversely, the fluid moves in response to the body motion. We study the occurrence of chaos in the system of ODEs emerging from these assumptions. It is well-known that the system consisting of a circular body with uniform mass distribution interacting with a single point vortex is integrable. Here we investigate how this integrability breaks down when the body center-of-mass is displaced from its geometrical center. We find two distinct regions of chaos and discuss how they relate to the topology of the trajectories of body and vortex.  相似文献   

18.
A review of the theory of quasigeostrophic singular vortices embedded in regular flows is presented with emphasis on recent results. The equations governing the joint evolution of singular vortices and regular flow, and the conservation laws (integrals) yielded by these equations are presented. Using these integrals, we prove the nonlinear stability of a vortex pair on the f-plane with respect to any small regular perturbation with finite energy and enstrophy. On the β-plane, a new exact steady-state solution is presented, a hybrid regular-singular modon comprised of a singular vortex and a localized regular component. The unsteady drift of an individual singular β-plane vortex confined to one layer of a two-layer fluid is considered. Analysis of the β-gyres shows that the vortex trajectory is similar to that of a barotropic monopole on the β-plane. Non-stationary behavior of a dipole interacting with a radial flow produced by a point source in a 2D fluid is examined. The dipole always survives after collision with the source and accelerates (decelerates) in a convergent (divergent) radial flow.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号