首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental studies have reported that glycine is adsorbed on the Cu(110) and Cu(100) surfaces in its deprotonated form at room temperature, but in its zwitterionic form on Pd(111) and Pt(111). In contrast, recent density functional theory (DFT) calculations indicated that the deprotonated molecules are thermodynamically favored on Cu(110), Cu(100), and Pd(111). To explore the source of this disagreement, we have tested three possible hypotheses. Using DFT calculations, we first show that the kinetic barrier for the deprotonation reaction of glycine on Pd(111) is larger than on Cu(110) or Cu(100). We then report that the presence of excess hydrogen would have little influence on the experimentally observed results, especially for Pd(111). Lastly, we perform Monte Carlo simulations to demonstrate that the aggregates of zwitterionic species on Pt(111) are energetically preferred to those of neutral species. Our results strongly suggest that the formation of aggregates with relatively large numbers of adsorbed molecules is favored under experimentally relevant conditions and that the adsorbate-adsorbate interactions in these aggregates stabilize the zwitterionic species.  相似文献   

2.
We utilized the strategy of 'borrowing SERS activity', by chemically coating several atomic layers of a Pt-group metal on highly SERS-active Au nanoparticles, to obtain the first SERS (also Raman) spectra of surface water on Pt and Pd metals, and propose conceptual models for water adsorbed on Pt and Pd metal surfaces.  相似文献   

3.
Kosloff R  Katz G  Zeiri Y 《Faraday discussions》2000,(117):291-301; discussion 331-45
The dynamics of excited states of adsorbates on surfaces caused by charge transfer is studied. Both negative and positive charge transfer processes are possible. In particular we are interested in positive charge transfer from a metal surface to molecular or atomic oxygen adsorbed on the surface. Once the negatively charged oxygen on the surface loses an electron it becomes chemically activated. The ability of this species to react depends on the quenching time or back transfer. The analysis of these processes is based on a set of diabatic potential energy surfaces each representing a different charged oxygen species. The dynamics is followed by solving the multichannel time-dependent Schr?dinger equation or Liouville von Neumann equation. Due to the nonadiabatic character of these reactions large isotope effects are predicted.  相似文献   

4.
单原子催化是提高贵金属利用率的有效手段,而表征单原子催化剂是理解单原子催化的基础.探针分子红外光谱可用于识别和定量催化剂样品中孤立的Pt族金属物种的浓度,从而得到负载的孤立的Pt族金属物种的局部几何形状、稳定性、活性及其分散性.本文讨论了该技术用于识别和表征含负载型孤立的Pt族金属原子催化剂的效能、应用、以及未来的发展方向.  相似文献   

5.
Chemical reactivity of mixed transition metal clusters of the second-row is investigated by extended Hückel molecular orbital calculations including a parametrized core repulsion term. Using atomization energies and charge or Fukui indices for bond and site attacks, respectively, it is found that reactivity is enhanced in mixed clusters in comparison with pure ones in agreement with available experimental results.  相似文献   

6.
Hexagonal boron nitride (h‐BN) has recently garnered significant interest as a substrate and dielectric for two‐dimensional materials and devices based on graphene or transition metal dichalcogenides such as molybdenum disulfide (MoS2). As substrate surface impurities and defects can negatively impact the structure and properties of two‐dimensional materials, h‐BN surface preparation and cleaning are a critical consideration. In this regard, we have utilized X‐ray photoelectron spectroscopy to investigate the influence of several ex situ wet chemical and in situ thermal desorption cleaning procedures on pyrolytic h‐BN surfaces. Of the various wet chemistries investigated, a 10 : 1 buffered HF solution was found to produce surfaces with the lowest amount of oxygen and carbon contamination. Ultraviolet/ozone oxidation was found to be the most effective ex situ treatment for reducing carbon contamination. Annealing at 1050 °C in vacuum or 10?5 Torr NH3 was found to further reduce oxygen and carbon contamination to the XPS detection limits. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
First the analytical tools, preparation methods and surface crystallography of clean GaAs surfaces are briefly reviewed. Besides the usual methods of cleaving, ion bombardment and annealing, molecular beam epitaxy is mainly used as a growth method under UHV conditions, and has brought a manifold of differently reconstructed structures on the same crystallographic surface, depending on the exact experimental conditions during growth. Quantitative analysis of the surface composition by AES gives the result that these structures differ only in the amount of As in the topmost layer. From the combination of theoretical LEED analysis, UPS results and arguments considering the different physicochemical nature of Ga and As atoms, rehybridisation of the surface atomic bonds emerges as the driving force for reconstruction: the surface Ga atoms try to assume a trivalent planarsp2 and the As atoms a trivalentp3 configuration with three mutually perpendicularp-bonds. The better this rehybridised configuration can be achieved, the better is the chemical stability of the respective structure. The sticking coefficient for oxygen, although generally low, thus varies between ~10-4 and <10-9, depending on the crystallographic surface and, on the same surface, on the degree of surface bond saturation given by the respective structure. However, it emerges that, at least on As-depleted polar surfaces, adsorption proceeds via a mechanism of removal of Ga atoms during exposure and adsorption on the defect sites created in this way. The existence of such a complicated mechanism is consistent with the difficulties arising with the preparation of thick stoichiometric oxide layers, the preparation methods and properties of which are reviewed briefly in the last section.  相似文献   

8.
On metal surfaces the top layer of atoms usually relaxes inwards, and several metal surfaces reconstruct, particularly W and Mo (001) and Ir, Pt and Au (001) and (110). This paper reviews the electronic origins of these atomic displacements, and the physical effects which they lead to. The surface relaxations are explained in terms of the change in balance between electronic forces at the surface. The W (001) surface reconstructs from (1 × 1) to (?2 × ?2)R45° in a continuous phase transition on cooling below room temperature, and the structure of these phases and the nature of the phase transition are discussed. The driving force for the reconstruction is discussed in terms of calculations and photoemission studies of the surface electronic structure. Phenomenological Landau theory is used to describe the effect of surface steps on the transition, and the origin of the long wavelength modulation in the Mo (001) reconstruction. Finally the reconstructions of Ir, Pt and Au (001) and (110) are briefly described; these involve a more substantial movement of atoms than in the W and Mo reconstructions.  相似文献   

9.
10.
The structure of soft matter systems at interfaces is of utmost importance in the fields of nanopatterning and self-assembly. It has been shown that lamellar and hexagonal patterns can form on interfaces, for a wide variety of systems. The asphericity of charged domains is considered here for different strengths of the electrostatics, determined by the interface media, relative to the short range van der Waals interactions between the molecular components. The phase behavior of the surface structure is explored by using molecular dynamics simulations, including some dynamical aspects of the interaction between neighboring domains, using the Lindemann criterion [F. Lindemann, Z. Phys. 11, 609 (1910)]. The charge ratio of the electrostatic components influences the shape of the domains, as well as the degree of local order in the interdomain structure.  相似文献   

11.
This paper presents a detailed study of a water adlayer adsorbed on Pt(111) and Rh(111) surfaces using periodic density functional theory methods. The interaction between the metal surface and the water molecules is assessed from molecular dynamics simulation data and single point electronic structure calculations of selected configurations. It is argued that the electron bands around the Fermi level of the metal substrate extend over the water adlayer. As a consequence in the presence of the water layer the surface as a whole still maintains its metallic conductivity-a result of a crucial importance for understanding the process of electron transfer through the water/metal interface and electrochemical reactions in particular. Our results also indicate that there exists a weak bond between the hydrogen of the water and the Rh metal atoms as opposed to the widespread (classical) models based on purely repulsive interaction. This suggests that the commonly used classical interactions potentials adopted for large scale molecular dynamics simulations of water/metal interfaces may need revision. Two adsorption models of water on transition metals with the OH bonds pointing towards or away of the surface are also examined. It is shown that due to the very close values of their adsorption energies one should consider the real structure of water on the surface as a mixture of these simple "up" and "down" models. A model for the structure of the adsorbed water layer on Rh(111) is proposed in terms of statistical averages from molecular dynamics simulations.  相似文献   

12.
The review surveys the conditions of formation and properties of four forms of surface carbon on transition metals, to wit, adsorbed atoms and clusters, surface carbide and graphite, and their role in the physical and chemical processes on the surface. The first-order phase transition in the adlayer, when graphite islands coexist with carbon gas, are considered. The effect of intercalation, when atoms (Cs, K, Na, Ba, Pt, Si) penetrate spontaneously under the graphite islands physisorbed on the metal, and its mechanism are discussed. An analysis is made of the poisoning of platinum-group metal catalysts in the reaction of dissociation, when graphite islands characterized by extreme adsorption and catalytic passivity form in the adlayer. The method of CsCl dissociation to probe the surface carbon is treated. Attention is drawn to the adsorption of a number of atoms (Cs, K, Ba, Pt) on a graphite monolayer on metals, and the properties of such systems are discussed. The effects observed in coadsorption of CsCl molecules with K, Na, Ba, Tm atoms on a graphite monolayer on metals are covered. By analogy with the bulk carbides, surface carbides of fixed stoichiometry and very strong metal-carbon bonding have been revealed to form on the surface of transition metals (W, Re, Mo). The effect of displacement of surface carbon into the bulk of the metal stimulated by the adsorption of some atoms (Si, S, O) is discussed. The carbon clusters adsorbed on metals are considered. The transport of surface carbon, its desorption and diffusion between the surface and the bulk of the metal with a single- and double-phase adlayer are reviewed.  相似文献   

13.
《Tetrahedron》1987,43(7):1635-1642
Irradiation of acrolein vapors in the presence of films of nickel and other metals results in the formation of thin films of polyacrolein on the metal surface. The polyarcrolein film protects the metal surface from abrasion and corrosion. Polymer growth is more rapid on oxidized vs. unoxidized metal surfaces indicating a role for surface oxide sites in the polymerization process. Several other monomers investigated fail to form adhesive polymer films on metal films, but can be copolymerized with acrolein.  相似文献   

14.
A chemical analysis of aqueous extracts from shungite-III from the Zazhogino deposit (Republic of Karelia) and of natural water contacting with shungite rocks was made. The chemical composition and bactericide properties of “shungite water” were studied.  相似文献   

15.
Two novel deposition methods were used to synthesize Pt-TiO(2) composite photoelectrodes: a tilt-target room temperature sputtering method and aerosol-chemical vapor deposition (ACVD). Pt nanoparticles (NPs) were sequentially deposited by the tilt-target room temperature sputtering method onto the as-synthesized nanostructured columnar TiO(2) films by ACVD. By varying the sputtering time of Pt deposition, the size of deposited Pt NPs on the TiO(2) film could be precisely controlled. The as-synthesized composite photoelectrodes with different sizes of Pt NPs were characterized by various methods, such as SEM, EDS, TEM, XRD, and UV-vis. The photocurrent measurements revealed that the modification of the TiO(2) surface with Pt NPs improved the photoelectrochemical properties of electrodes. Performance of the Pt-TiO(2) composite photoelectrodes with sparsely deposited 1.15 nm Pt NPs was compared to the pristine TiO(2) photoelectrode with higher saturated photocurrents (7.92 mA/cm(2) to 9.49 mA/cm(2)), enhanced photoconversion efficiency (16.2% to 21.2%), and increased fill factor (0.66 to 0.70). For larger size Pt NPs of 3.45 nm, the composite photoelectrode produced a lower photocurrent and reduced conversion efficiency compared to the pristine TiO(2) electrode. However, the surface modification by Pt NPs helped the composite electrode maintain higher fill factor values.  相似文献   

16.
The three kinds of monomer films on metal surfaces were deposited by adsorption from a solution of 6-polymerizable substituents-1,3,5-triazine-2,4-dithiol monosodium salts (RTDN); the polymerizable substituents such as cis-9-octadecenylamino, di(cis-9-octadecenyl)amino, and p-vinylbenzyl(cis-9-octadecenyl)amino groups were selected in view of the polymerization activity of unsaturated groups in the substituents and the packing degree of monomer molecules. The monomer films were estimated to consist of mainly 6-substituents-1,3,5,-triazine-2,4-dithione (3H, 5H) and to be multimolecular layers that are considerably cross-packed and ordered. The monomer films on metal surfaces were polymerizable under a UV light irradiation in air atmosphere to give polymer films. In the photopolymerization, azobis(isobutyronitrile) (AIBN) was very effective for increasing the monomer conversion and the polymerization rate. The optimum concentration of AIBN in monomer films was very small, about 0.025 mol %. The monomer conversion was influenced by the kind of monomers, namely, the polymerization activity and the packing degree. The effect of the packing degree was especially remarkable. The monomer conversion decreased with an increase in the thickness of monomer films. This is because the polymerization was initiated by oxygen and AIBN, which were diffused into the inner of monomer films. The possibility of polymerization of the unsaturated groups and the thione groups in monomer molecules under UV light irradiation is discussed.  相似文献   

17.
Density functional theory was employed to investigate the water-gas-shift reaction (WGS, CO+H2O-->H2+CO2) on Au29 and Cu29 nanoparticles seen with scanning tunneling microscopy in model AuCeO2(111) and CuCeO2(111) catalysts. Au(100) and Cu(100) surfaces were also included for comparison. According to the calculations of the authors, the WGS on these systems operate via either redox or associative carboxyl mechanism, while the rate-limiting step is the same, water dissociation. The WGS activity decreases in a sequence: Cu29>Cu(100)>Au29>Au(100), which agrees well with the experimental observations. Both nanoparticles are more active than their parent bulk surfaces. The nanoscale promotion on the WGS activity is associated with the low-coordinated corner and the edge sites as well as the fluxionality of the particles, which makes the nanoparticles more active than the flat surfaces for breaking the O-H bond. In addition, the role of the oxide support during the WGS was addressed by comparing the activity seen in the calculations of the authors for the Au29 and Cu29 nanoparticles and activity reported for XCeO2(111) and XZnO(000i)(X=Cu or Au) surfaces.  相似文献   

18.
The effects of the base composition and dopants on the saturation magnetization and coercivity of hexaferrites BaAlxFe12–xO19, SrAlxFe12–xO19, BaGaxFe12–xO19, SrGaxFe12–xO19, BaScxFe12–xO19 and SrScxFe12–xO19 have been studied. Isomorphic substitutions of Al2O3, Ga2O3, and Sc2O3 for Fe2O3 in barium and strontium ferrites are found to increase coercivity due to increasing crystallographic anisotropy constant and to reduce the saturation magnetization value. Processes controlling microstructure formation, specifically recrystallization processes, are shown to have a noticeable effect on the level of properties of the ferrites under study with the use of dopants. The most efficient dopants are boron, calcium, and silicon oxides, which provide the formation of relatively fine-grained structures. The increased coercivity upon doping with these dopants is also due to the formation of grain-boundary interlayers of a nonmagnetic glassy phase and the associated efficient retardation of moving domain walls.  相似文献   

19.
20.
Wetting of nanopatterned surfaces: the hexagonal disk surface   总被引:1,自引:0,他引:1  
Metropolis Monte Carlo simulations are used to investigate the wetting of chemically nanopatterned surfaces, for the case of hexagonal disk patterns where liquid wishes to wet high-energy circular patches but not wet the background surface. We calculate the density profiles of saturated liquid adsorbed on a variety of such substrates, spanning the nanoscale to atomic scale patterns. In addition, statistical mechanical sum rules are used to obtain interfacial order parameters and interfacial free energies. We observe that Cassie's law is typically obeyed, together with an associated breakdown of the mechanical interpretation of Young's equation, for pattern wavelengths greater than 15 molecular diameters. Here, the adsorbed fluid exists as an array of hemi-drops. At about half this wavelength, the breakdown of Cassie's law lies within realistic energy scales and is associated with the unbending of the outer surface of adsorbed films. For atomic scale patterns, the usual interpretation of Young's equation is restored for films thicker than one monolayer. At high chemical contrast, when the monolayer in contact with high-energy regions would prefer to be crystalline, we observe a variety of exotic interfacial phenomena that may have technological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号