首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Self-assembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) five-arm stars (PEO-b-PCL) was studied at the air/water (A/W) interface. The block copolymers consist of a hydrophilic PEO core with hydrophobic PCL chains at the star periphery. All the polymers have the same number of ethylene oxide repeat units (9 per arm), and the number of epsilon-caprolactone repeat units ranges from 0 to 18 per arm. The Langmuir monolayers were analyzed by surface pressure/mean molecular area isotherms, compression-expansion hysteresis experiments, and isobaric relaxation measurements, and the Langmuir-Blodgett (LB) films' morphologies were investigated by atomic force microscopy (AFM). PCL homopolymers crystallize directly at the A/W interface in a narrow surface pressure range (11-15 mN/m). In the same pressure region, the star-shaped block copolymers undergo a phase transition corresponding to the collapse and the crystallization of the PCL chains as shown by the presence of a pseudoplateau in the isotherms. The LB films were prepared by transferring the Langmuir monolayers onto mica substrates at various surface pressures. AFM imaging confirmed the formation of PCL crystals in the LB monolayers of the PCL homopolymers and of the copolymers, but also showed that the PCL segments can undergo additional crystallization after monolayer transfer during water evaporation. The PCL crystal morphologies were also strongly influenced by the surface pressure and by the PEO segments.  相似文献   

2.
Surface pressure-induced crystallization of poly(epsilon-caprolactone) (PCL) from a metastable region of the surface pressure-area per monomer (Pi-A) isotherm in Langmuir monolayers at the air/water (A/W) interface has been captured in real time by Brewster angle microscopy (BAM). Morphological features of PCL crystals grown in Langmuir films during the compression process exhibit four fully developed faces and two distorted faces. During expansion of the crystallized film, polymer chains slowly detach from the crystalline domains and diffuse back into the monolayer as the crystals "melt". Typical diffusion-controlled morphologies are revealed by BAM during the melting process as the secondary dendrites melt away faster, that is, at a higher surface pressure than the principal axes. Electron diffraction on Langmuir-Schaefer films suggests that the lamellar crystals are oriented with the polymer chain axes perpendicular to the substrate surface, while atomic force microscopy reveals a crystal thickness of approximately 7.6 nm.  相似文献   

3.
Poly(epsilon-caprolactone)/polystyrene (PCL/PS) blends, where nonamphiphilic PS is glassy in the bulk state at the experimental temperature of 22.5 degrees C, are immiscible as Langmuir films at the air/water (A/W) interface. Surface pressure-area per monomer isotherm analyses indicate that the surface concentration of amphiphilic PCL is the only factor influencing the surface pressure below the collapse transition. For PS-rich blends, Brewster angle microscopy (BAM) studies at the A/W interface and atomic force microscopy studies on Langmuir-Schaefer films reveal that PS nanoparticle aggregates formed at very low surface pressures can form networks upon further compression. The morphologies seen in PS-rich blends (networklike rings) are consistent with a recent study of a nonamphiphilic polyhedral oligomeric silsesquioxane (POSS), octaisobutyl-POSS, blended with amphiphilic poly(dimethylsiloxane), suggesting that the nonamphiphilic PS aggregates at the A/W interface produce domains with dipole densities that differ from that of pure PCL. In all composition regimes, the amphiphilic PCL phase tends to spread and form a continuous surface layer at the A/W interface, while simultaneously improving the dispersion of nonamphiphilic PS domains. During film expansion, BAM images show a gradual change in the surface morphology from highly continuous networklike structures (PS-rich blends) to broken ringlike structures (intermediate composition) to small discontinuous aggregates (PCL-rich blends). This study provides valuable information on the morphological evolution of semicrystalline PCL-based polymer blends confined in a "two-dimensional" geometry at the A/W interface and fundamental insight into the influence of microstructure (domain size, phase-separated structures, crystalline morphology, etc.) on the interfacial properties of blends as Langmuir films.  相似文献   

4.
Poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) ultrafine fibers were prepared by electrospinning. The influence of cationic and anionic surfactants on their enzymatic degradation behavior was investigated by measuring weight loss, molecular weight, crystallinity, and melting temperature of the fibers as a function of degradation time. Under the catalysis of proteinase K, the PLLA fibers containing the anionic surfactant sodium docecyl sulfate (SDS) exhibited a faster degradation rate than those containing cationic surfactant triethylbenzylammonium chloride (TEBAC), indicating that surface electric charge on the fibers is a critical factor for an enzymatic degradation. Similarly, TEBAC-containing PCL fibers exhibited a 47% weight loss within 8.5 h whereas SDS-containing PCL fibers showed little degradation in the presence of lipase PS. By analyzing the charge status of proteinase K and lipase PS under the experimental conditions, the importance of the surface charges of the fibers and their interactions with the charges on the enzymes were revealed. Consequently, a "two-step" degradation mechanism was proposed: (1) the enzyme approaches the fiber surface; (2) the enzyme initiates hydrolysis of the polymer. By means of differential scanning calorimetry and wide-angle X-ray diffraction, the crystallinity and orientation changes in the PLLA and PCL fibers during the enzymatic degradation were investigated, respectively.  相似文献   

5.
A newly designed 1.5th generation poly(amido amine) dendrimer with an azacrown core, hexylene spacers, and octyl terminals was spread on gold nanoparticle (Au-NP) suspension. The surface pressure-area isothermal curves indicated that the molecular area of dendrimer on Au-NP suspension was significantly smaller than that on water, indicating the formation of dendrimer/Au-NP composites. The dendrimer Langmuir films on the Au-NP suspension were transferred to copper grids at various surface pressures and observed by transmission electron microscopy. The transferred films consisted of a fractal-like network of nanoparticles at low surface pressure and of a defect-rich monolayer of nanoparticles at high surface pressure. From these results, it was suggested that the dendrimers bind Au-NPs, and dendrimer/Au-NP composites formed networks or monolayers at the interface. From the intensity decrease of the Au plasmon band of Au-NP suspension after the formation of composite, it was estimated that some (approximately 14) dendrimer molecules bind to one Au-NP. Furthermore, neutron reflectivity at the air/suspension interface and X-ray reflectivity of the film transferred on a silicon substrate revealed that the dendrimer molecules are localized on the upper-half surface of Au-NP. Metal affinity of azacrown, flexibility of hexylene spacer, and amphiphilicity of dendrimer with octyl terminals played important roles for the formation of dendrimer/Au-NP hybrid films. The present investigation proposed a new method to fabricate the self-assembled functional polymer/nanoparticle hybrid film.  相似文献   

6.
A blend of poly(epsilon-caprolactone) (PCL) and poly(vinyl chloride) (PVC) with 90 wt % PCL was prepared. Two films of this blend, which were grown at 35 and 45 degrees C, showed the absence and presence of banded spherulites, respectively. A detailed examination conducted with time-of-flight secondary ion mass spectrometry (ToF-SIMS) found that the surface composition of the film grown at 45 degrees C was related to its structure, which was shown to contain ridges and valleys. Phase images obtained using atomic force microscopy (AFM) indicated that the ridges and valleys consisted of edge-on and flat-on lamellae, respectively. ToF-SIMS imaging revealed that PVC and PCL were located mainly on the surface of the valleys and ridges, respectively. This morphology-driven surface segregation was caused by the difference in the surface energy between the flat-on and edge-on lamellae.  相似文献   

7.
The hydrolytic and enzymatic degradation behavior of poly(epsilon-caprolactone) (PCL) is investigated using the Langmuir monolayer technique, and an improved data acquisition and data reduction procedure is presented. Hydrolytic and enzymatic monolayer degradation experiments of PCL with various molecular weights by Pseudomonas cepacia lipase have been carried out to analyze the influence of subphase pH, subphase temperature, enzyme concentration, and the packing density of polymer chains on the degradation kinetics. The enzymatic monolayer degradation results in an exponential increase in the number of dissolved degradation fragments with increasing degradation time, which confirms random chain scission to be the dominant scission mechanism. The increase in the enzymatic scission rate constant with decreasing initial average molecular weight of the polymers is assigned to the influence of the area density of polar terminal groups on the substrate-enzyme complex formation.  相似文献   

8.
Aqueous solutions of self-assembled nanoparticles formed by biocompatible diblock copolymers of poly(epsilon-caprolactone)-block-poly(ethylene oxide) (PCL-PEO) with the same molar mass of the PEO block (5000 g mol-1) and three different molar masses of the PCL block (5000, 13 000, and 32 000 g mol-1) have been prepared by a fast mixing the copolymer solution in a mild selective solvent, tetrahydrofuran (THF)/water, with an excess of water, that is, by quenching the reversible micellization equilibrium, and a subsequent removal of THF by dialysis of the water-rich solution against water. The prepared nanoparticles have been characterized by static and dynamic light scattering and atomic force microscopy imaging. It was found that stable monodisperse nanoparticles are formed only if the initial mixed solvent contained 90 vol % THF. The results show that the prepared nanoparticles are spherical vesicles with relatively thick hydrophobic walls, that is, spherical core/shell nanoparticles with the hollow core filled with the solvent.  相似文献   

9.
Poly(epsilon-caprolactone) (PCL)/chitin and PCL/chitosan blend films with compositional gradients were successfully fabricated by a dissolution/diffusion method; that is, repeatedly pouring the PCL/chitin (or PCL/chitosan) blend solutions, with variable composition, onto polysaccharide layers. The compositional gradient structure in the resulting films was characterized by polarized optic microscopy, ATR-FT-IR and trans-FT-IR microscopic spectroscopy. Enzymatic degradability of the PCL/chitin and PCL/chitosan blend films with compositional gradients in the presence of lysozyme was compared with those of homogeneous films and two-layer films. It was found that the degradation rate of PCL/chitin blend films with a compositional gradient was far lower than that of the neat chitin film, whereas the degradation rate of PCL/chitosan blend films with a compositional gradient was close to that of the neat chitosan film. The suppression of the chitosan crystallization, which accelerates the enzymatic degradation, at the surface of PCL/chitosan films with a compositional gradient was much more severe than that for PCL/chitin films with a compositional gradient.  相似文献   

10.
The associative behavior of monodisperse diblock copolymers consisting of a hydrophilic poly(ethylene oxide) block and a hydrophobic poly(epsilon-caprolactone) or poly(gamma-methyl-epsilon-caprolactone) block has been studied in aqueous solution. Copolymers have been directly dissolved in water. The solution properties have been studied by surface tension, in relation to mesoscopic analyses by NMR (self-diffusion coefficients), transmission electron microscopy, and small-angle neutron and X-ray scattering. The experimental results suggest that micellization occurs at low concentration (approximately 0.002 wt %) and results in a mixture of unimers and spherical micelles that exchange slowly. The radius of the micelles has been measured (ca. 11 nm), and the micellar substructure has been extracted from the fitting of the SANS data with two analytical models. The core radius and the aggregation number change with the hydrophobic block length according to scaling laws as reported in the scientific literature. The poly(ethylene oxide) blocks are in a moderately extended conformation in the corona, which corresponds to about 25% of the completely extended chain. No significant modification is observed when poly(gamma-methyl-epsilon-caprolactone) replaces poly(epsilon-caprolactone) in the diblocks.  相似文献   

11.
Many dynamical properties of polymers, including segmental relaxation and chain diffusion, exhibit anomalies in thin‐film samples. We extend the studies of thin‐film dynamics to the case of semicrystalline polymers and present a study of the crystal growth rate for thin films of poly(ethylene oxide). We used optical microscopy and quartz crystal microbalance techniques to characterize the kinetics of crystallization for films with thicknesses from 40 to 1000 nm for a range of temperatures near the melting point. A remarkable slowing down of the crystal growth is observed at all temperatures studied for films with a thickness of less than ~100 nm. The results can be used to suggest reductions of the mobility of chains at the crystal/amorphous interface. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2615–2621, 2001  相似文献   

12.
The biodegradable poly(butylene succinate)/poly(epsilon-caprolactone) (PBS/PCL) microcapsules containing indomethacin were prepared by emulsion solvent evaporation method. The morphologies, thermal properties, and release behaviors of PBS/PCL microcapsules were investigated. As a result, the microcapsules exhibited porous and spherical form in the presence of gelatin as a surfactant. From the DSC result, the PBS/PCL microcapsules showed the two exothermic peaks meaning the melting points of PCL and PBS. The results of FT-IR and DSC proved that the PBS and PCL were mixed so that the PBS/PCL microcapsules were composed of two wall-forming materials. And the release rate of indomethacin from the microcapsules was decreased with increasing the PCL content. It was noted that an addition of PCL on the PBS led to the decrease of pore size in the PBS/PCL microcapsules.  相似文献   

13.
We present the relationship between the spatial arrangement and the photophysical properties of fluorescent polymers in thin films with controlled structures. Eight surfactant poly(p-phenyleneethynylene)s were designed and studied. These detailed studies of the behavior of the polymers at the air-water interface, and of the photophysical properties of their transferred LB films, revealed key structure-property relationships. Some of the polymers displayed pi-aggregates that are characteristic of an edge-on structure at the air-water interface. Monolayer LB films of these polymers showed greatly reduced quantum yields relative to solution values. Other polymers exhibited a highly emissive face-on structure at the air-water interface, and did not form pi-aggregates. The combination of pressure-area isotherms and the surface pressure dependent in situ UV-vis spectra of the polymers at the air-water interface revealed different behavioral details. In addition, the UV-vis spectra, fluorescence spectra, and quantum yields of the LB films provide design principles for making highly emissive films.  相似文献   

14.
The crystal growth and morphology in 150‐nm‐thick PET nanocomposite thin films with alumina (Al2O3) nanoparticle fillers (38 nm size) were investigated for nanoparticle loadings from 0 to 5 wt %. Transmission electron microscopy of the films showed that at 1 wt % Al2O3, the nanoparticles were well dispersed in the film and the average size was close to the reported 38 nm. Above 2 wt % Al2O3, the nanoparticles started to agglomerate. The crystal growth and morphological evolution in the PET nanocomposite films kept at an isothermal temperature of 217 °C were monitored as a function of the holding time using in situ atomic force microscopy. It was found that the crystal nucleation and growth of PET was strongly dependent on the dispersed particles in the films. At 1 wt % Al2O3, the overall crystal growth rate of PET lamellae was slower than that of the PET homopolymer films. Above 2 wt % Al2O3, the crystal growth rate increased with nanoparticle loading because of heterogeneous nucleation. In addition, in these PET nanocomposite thin films, the Al2O3 nanoparticles induced preferentially oriented edge‐on lamellae with respect to the surface, which was not the case in unfilled PET as determined by grazing‐incidence X‐ray diffraction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 747–757, 2007  相似文献   

15.
Langmuir films of facial T-shaped amphiphilic liquid crystals were studied at the air-water interface. The liquid crystals were composed of three incompatible segments: a central rigid rodlike p-terphenyl (TP) group, two flexible hydrophobic n-alkyl terminal chains of identical length linked through ether bonds, and one hydrophilic lateral chain of three ethylene oxide units with a carboxyl end group. In order to determine the influence of the alkyl chain length on the characteristics of condensed films three TPs having n-alkyl chains with eight (TP8/3), ten (TP10/3) or 16 (TP16/3) carbon atoms were investigated. Surface pressure - mean molecular area isotherms revealed clear differences. TP8/3 and TP10/3 exhibit an extended plateau region where a phase transition from monolayer to multilayer takes place. On the other hand, the TP16/3 isotherm showed a distinct maximum ('spike') corresponding to a surprising surface crystallization process which is reported for the first time for a Langmuir film of a liquid crystal. Brewster angle microscopy clearly confirmed these differences: TP8/3 and TP10/3 formed circular domains with liquid crystalline order, while TP16/3 formed well-defined two-dimensional polycrystalline spherulites which are fractured after further compression. The film thickness determined by X-ray reflectivity measurements correlated with a multilayer formation for TP10/3. The morphology of Langmuir-Blodgett (LB) films transferred onto silicon wafers and studied by atomic force microscopy also confirmed the striking different behavior (multilayer formation vs. 2D crystallization) of the TPs under investigation.  相似文献   

16.
The Michael-type addition of aliphatic (co)polyesters onto gamma-acryloyloxy epsilon-caprolactone units is a very straightforward technique of functionalization and grafting, which is tolerant to a variety of functional groups and does not require intermediate protection/deprotection steps.  相似文献   

17.
The biodegradable poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide) (PEO) microcapsules and the analyzing of form and features for the manufacturing conditions were investigated in a prospective drug delivery systems (DDS) through drug release. The effects of emulsifier, emulsifier concentration, and stirring rate on the diameter and form of the microcapsules were examined using image analyzer (IA) and scanning electron microscope (SEM). The role of interfacial adhesion between PCL/PEO and drug was determined by contact angle measurements, and the drug release rate of the microcapsules was characterized by UV-vis spectroscopy. As a result, the microcapsules were made in spherical forms with a mean particle size of 170 nm approximately 68 microm. And the work of adhesion between water and PCL/PEO was increased with increasing the PEO content, which is due to higher hydrophilicity of PEO. The drug release rate of the microcapsules was significantly increased as the PEO content increased, which could be attributed to the increasing of the hydrophilic groups or the degree of adhesion at the interfaces.  相似文献   

18.
The morphology of fully and partially polymerized poly(phthalocyaninatogermoxane), [Ge(Pc)O]n, crystals was studied by both scanning and transmission electron microscopy. It was found that the morphological units are lath-like crystals which aggregate into particles. Generally speaking, the thickness, width, and length of the laths are in the range of 1000–2000 Å, 2000–10,000 Å, and 1–5 μm, respectively. Each lath may possess a mosaic substructure. Selected-area electron diffraction patterns indicate that the rigid, extended [Ge(Pc)O]n chains are parallel to the large surface of the lath, and in most crystals the chains lie parallel to the lengthwise direction of the lath. However, in several cases, the chain orientation is at an angle of about 60° with respect to the long edge of the lath. The electron diffraction results are in accord with a tetragonal crystal structure (P4/m).  相似文献   

19.
On the basis of the synthesis of water-soluble poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) block copolymers, the supramolecular hydrogels were fabricated rapidly in aqueous solutions by their inclusion complexation with alpha-cyclodextrin. X-ray diffraction (XRD) analyses confirmed the supramolecular self-assemblies of alpha-cyclodextrin threaded onto amphiphilic PCL-PEG-PCL block copolymers. The resulting hydrogels display a high degree of elasticity, with the storage modulus (G') greater than the loss modulus (G') over the entire range of frequency. Moreover, their viscosity greatly diminished as they were sheared. By controlling the molecular weight of the PEG component in the block copolymers and the content of the block copolymer, their rheological properties could be modulated. Such hydrogel materials have the potential to be used as tissue engineered scaffolds, biosensors in the human body, and carriers for controlled drug delivery.  相似文献   

20.
Two amphiphilic PAMAM dendrimers are synthesized by attaching 12-hydroxydodecanoic acid (HA) chains to a poly(amido amine) (PAMAM) dendrimer core (including generation I and generation II). The limiting molecular area obtained from the surface pressure-area isotherm at the air/water interface suggests the edge-on configuration for both dendrimers in Langmuir films. The edge-on arrangement is also supported by the atomic force microscopic (AFM) studies of the Langmuir-Blodgett films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号